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Approximately 200 million men and 100 million women smoke worldwide.  In 

the United States, an estimated 25.9 million men (23.9 percent) and 20.7 million women 

(18.1 percent) are smokers.  The commencement of smoking at a young age is thought 

to increase addiction liability, decrease the probability of successful cessation, and 

correlate with a higher number of cigarettes smoked per day.  Studies from the World 

Health Organization indicate that between 80,000 and 100,000 children start smoking 

every day worldwide.  These statistics suggest that adolescence is a critical phase for 

developing nicotine dependence.  The work in this dissertation contributes to the further 
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understanding of this unique developmental period.  Our research shows that various 

aspects of nicotine dependence are both age- and sex-dependent.  We observed age- and 

sex-related differences in both nicotine reward and withdrawal models that imply a 

heightened vulnerability for adolescents.  In addition, we have investigated possible 

behavioral and molecular mechanisms which may underlie the elevated vulnerability to 

dependence.  The data illustrate that while behavioral mechanisms only play a minor 

role in the differences seen in reward and withdrawal, molecular mechanisms appear to 

have a greater contribution.   Specifically, increased nicotinic receptor function is likely 

to be a substantial contributor to age-related disparities.  In addition, nicotine is one of 

the first and most commonly abused drugs in adolescence and is known to be a strong 

predictor of subsequent alcohol and other drug abuse.  Our research investigated the 

effects of adolescent nicotine exposure on both nicotine and cocaine dependence in 

adulthood.  We found that exposure to nicotine during the early phase of adolescence 

affects both nicotine reward and withdrawal in adulthood.  Moreover, this exposure also 

bears impact on other drugs of abuse such as cocaine.  In summary, our data suggest 

that early adolescence is the most critical period for becoming dependent to nicotine 

and that early experimentation with nicotine may lead to enhanced vulnerability to 

dependence on more illicit drugs of abuse.  It is imperative that we understand why 

adolescents have a heightened susceptibility to nicotine dependence so that better 

smoking cessation therapies and prevention messages can be developed for this age 

group.   
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GENERAL INTRODUCTION 
 

A. Tobacco Smoking and Nicotine Dependence 

In the United States, an estimated 25.9 million men (23.9 percent) and 20.7 

million women (18.1 percent) are smokers (National Health Interview Survey (NHIS), 

2005, National Center for Health Statistics).  More importantly, smoking related-

diseases kill one in ten adults globally, or cause four million deaths.  By 2030, if current 

trends continue, smoking will kill one in six people (World Health Organization 

Smoking Statistics 2002).  Nicotine addiction is not only a problem for the adult 

population.  Surprisingly, over 6,000 teenagers begin smoking every day (American 

Lung Association Statistics 2002).  Moreover, 90% of adult smokers report their first 

use of tobacco prior to age 18 (Chassin et al. 1990).  Tobacco is reportedly the most 

avoidable cause of disease and disability, yet less than 7% of smokers who attempt to 

quit actually achieve more than one year of abstinence before they relapse (NIH Pub. 

No. 98-4342, CDC Prevention and Health Promotion, 2005).   Smoking is a significant 

and preventable health concern that needs further attention so that sophisticated health 

promotion campaigns and messages can be imparted to the public. 

Nicotine is the primary addictive component in tobacco that acts on the brain to 

produce both rewarding and aversive effects (Castane et al. 2005).   Although nicotine 

is known to reach the brain rapidly, it does not have long lasting acute effects due to its 

short half-life of 1-2 hours (Viveros et al. 2006).   This property of nicotine is likely to 

contribute to its repeated and consistent use.   In addition, environmental cues play an 

 1 
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important role in smoking addiction as well.  Several human and rodent studies have 

investigated the importance of cravings and contextual cues in smoking behavior using 

conditioned place preference models.  One study found that environmental cues related 

to smoking activate certain CREB-related molecular pathways in the brain; therefore 

eliciting the same effects as direct exposure to nicotine (Walters et al. 2005).   Another 

study examined brain activity in regions associated with attention, motivation, and 

reward while participants viewed a series of pictures of smoking-related objects and 

scenes (McClernon et al. 2005).  Study participants provided self-reports of cravings 

before, during, and after each session.  Researchers found that smokers who reported a 

greater urge to smoke following the period of abstinence also exhibited stronger brain 

activity after viewing smoking-related images.  In contrast, smokers who reported fewer 

cravings displayed stable or decreased brain activity, despite viewing the same 

smoking-related images after a period of abstinence (McClernon et al. 2005).  These 

differences may influence levels of cigarette craving following abstinence and may also 

affect the impact of smoking cues. Smokers who experience a greater sensitivity to 

smoking cues may have difficulty quitting smoking and may also be more prone to 

relapse.   

B. Adolescence and Smoking 

Tobacco smoking at a young age is an increasing problem in the United States 

and around the world.  The rate of adolescent smoking among Americans has been 

rising sharply since 1992 (Johnston et al. 1998).  Moreover, the age of initiation for 

smoking has also been declining (Johnston et al. 1998).  The commencement of 



www.manaraa.com

 

smoking at a young age is thought to increase addiction liability, decrease the 

probability of successful cessation (Colby et al. 2000; Kandel and Chen 2000), and 

correlate with a higher number of cigarettes smoked per day (Taoli and Wynder 1991).  

Studies from the World Health Organization provide evidence that around 50% of those 

who start smoking in adolescence go on to smoke for 15 to 20 years (2003).  These 

statistics should indicate the critical nature of providing influential prevention messages 

at an early age.  The longer a child or teenager is prevented from smoking, the higher 

the chance of preventing lifetime dependence.  

 Despite the fact that initial exposure to nicotine has been shown to be 

unpleasant (Eissenberg and Balster 2000), many adolescents still go on to become 

dependent on this drug despite the desire to quit.  Even though adolescent tobacco 

intake is thought to be lower than that of adults, this age group also experiences signs of 

withdrawal such as cravings, nervousness, and the inability to concentrate (Rojas et al. 

1998; Killen et al. 2001).  In fact, adolescent smokers report frequent unsuccessful 

attempts to quit due to cravings and withdrawal symptoms (Johnson 1982; Biglan and 

Lichtenstein 1984).  Certainly many factors are involved in an adolescent’s decision to 

maintain a regular level of smoking.  These include, but are not limited to, social 

pressure, environment, stress, biological effects, reinforcing effects, and aversive 

withdrawal symptoms.  These studies show that further investigation is needed 

regarding adolescent nicotine dependence and cessation therapies.  Indeed, Colby et al. 

(2000) wrote a review suggesting that the current methods and approaches to smoking 

cessation in adolescence need additional attention since successful cessation rates are 
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modest.  It is critical that we understand why this age group is particularly vulnerable to 

nicotine dependence and addiction so that better prevention messages and smoking 

cessation therapies can be developed.   

The Transition of Adolescence  

Adolescence is a critical decade of transition that occurs between a fully 

dependent child and gaining independence as an adult.  During this period, many 

changes occur in a variety of areas such as physical growth, cognition, social skills, 

physiology, and emotions.  Since this developmental stage induces alterations of a 

number of biological systems at one time, it is natural to assume that the adolescent will 

experience an increased vulnerability to a wide range of biological and behavioral 

problems.  One of these issues is that of substance abuse.  It has been shown that the 

adolescent brain may be more susceptible to the effects of addictive substances such as 

alcohol, nicotine, and cannabis among others (Spear 2000; Smith 2003; DiFranza 2007).  

Furthermore, studies have also demonstrated that early use of any drug is a strong 

indicator of regular drug use in adulthood (Toumbourou et al. 2005; Teeson et al. 2006).   

These studies impart the importance of effectively framing prevention messages, 

developing prevention strategies, and implementing useful public education tactics 

before adolescents begin drug experimentation. 

Adolescent Brain Development 

The unique timing of adolescent brain development is thought to be a large 

contributor to the heightened vulnerability to substance abuse.  While the brain of a 

young child is almost 95% of the size of an adult brain, there are many neuroanatomical 
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differences that yield dissimilar abilities to think and reason.  In general, studies have 

shown that the adolescent brain develops from back to front and from bottom to top; 

thus the areas associated with emotion, instinct, and pleasure develop first.  These areas 

include the amygdala, ventral tegmental area (VTA), and nucleus accumbens (NAc).  

Last to develop is the prefrontal cortex (PFC) which is responsible for critical thinking 

and judgment.  This imbalance leads to the activities which are often associated with the 

hallmarks of adolescent behavior; that they tend to be impulsive and emotionally 

driven, lack self-control and planned thinking, and demonstrate increased risk-taking 

behavior.   It is suggested that this maturation pattern contributes to an increased 

propensity toward substance abuse at a young age.   

Each brain region is susceptible to an immense amount of remodeling and 

maturation.  The PFC, in particular, undergoes many modifications during the 

adolescent period.  Volume of this region decreases in humans (Sowell et al. 1999) and 

rats (van Eden et al. 1990).  Furthermore, density of spines on pyramidal cells in the 

human PFC decline (Mrzljak et al. 1990).  On the other hand, dopaminergic (DA) input 

to the PFC peaks during this phase (Lewis 1997; Brenhouse et al. 2008), as does the 

quantity of DA transporters (Akbari et al. 1992).   In addition to these increases in 

dopaminergic input, an increase in the number of DA receptors has also been reported 

(Seeman et al. 1987).   While transformations of neural circuitry are not limited to the 

DA system, these changes are thought to play a critical role in the rewarding and 

reinforcing effects of many drugs of abuse, including nicotine. 
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In general, the adolescent brain goes through a vast amount of pruning, synapse 

loss, and alterations of neurobiological pathways.  It has been estimated that as many of 

half of the average number of synapses are lost during adolescence (Rakic et al. 1994).  

The function of this synaptic loss is not yet fully understood, but is assumed to have a 

developmental purpose.  One which has been suggested by Rakic et al. is that since 

many of the synapses in adolescence are excitatory, the pruning serves to decrease 

unnecessary excitatory stimuli to the brain.  In addition, a variety of receptors (DA, 

serotonin, GABA, acetylcholine) tend to be overproduced and subsequently pruned 

during this period.  (Lidow et al. 1991; Lidow and Rakic 1992).  Collectively, 

adolescence is a period of intense neurological development and many of the changes 

which are ongoing during this period may play a role in subsequent drug abuse. 

The Role of Gender in Nicotine Dependence 

Gender and sex differences in response to the behavioral effects of drugs have 

long been reported in humans and rodents (Bradley et el. 1968; Camp and Robinson 

1988; Sircar and Kim 1999; Damaj 2001; Hughes 2006; Jones et al. 2006).  However, 

most of the published work is related to the adult.  Indeed, female mice demonstrated 

lower sensitivity to the acute effects of nicotine when tested in an acute thermal pain 

model (Damaj 2001).  Decreased nicotine sensitivity in females has also been shown in 

several human studies (Jamner et al. 1998; Perkins et al. 1999).    In reward paradigms, 

adult female rats displayed a shorter latency to the first nicotine infusion in a self-

administration model and demonstrated faster acquisition of nicotine self-administration 

behavior (Donny et al. 2000; Chaudhri et al. 2005).   Pharmacokinetic and distribution 
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factors seem to play an important role in explaining these differences.  Indeed, 

Benowitz showed that women exhibit faster nicotine and cotinine metabolism as 

compared to men (2006), possibly due to hormonal influences.  This observation 

suggests that females may smoke more cigarettes to obtain desired levels of nicotine in 

the body resulting in a greater exposure to tobacco toxins and increased levels of 

addiction.  Neurobiological differences appear to contribute significantly to these sex 

differences as well.  Sex is a factor that influences many areas of the brain including 

(but not limited to) memory, emotion, pain perception, neurotransmitter signaling, and 

stress hormones.  Structural and functional differences have been shown in the 

hippocampus (Juraska 1991), amygdala (Hines et al. 1992), striatum and nucleus 

accumbens (Becker 1999).  Furthermore, there are unique differences in serotonin 

(Carlsson and Carlsson 1988) and dopamine (Becker 1999) transmission. These 

dimorphisms in signaling could lead to significant differences in behavioral responses, 

particularly those involving addiction pathways.   

Limited work on sex and gender differences in adolescent smoking has been 

done.  Even though adolescents have yet to reach full sexual maturity, some studies do 

suggest differences in smoking behavior and nicotine sensitivity.  Levin et al. (2003) 

has shown that female rats which initiate nicotine i.v. self administration in young 

adulthood exhibit higher nicotine intake as adults relative to rats that initiate self 

administration in adulthood.  Additionally, adolescent female mice have been shown to 

voluntarily consume nicotine orally in a dose-dependent manner and to consume 

significantly more than male adolescents (Klein et al. 2004).   As with adults, social and 
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environmental factors are likely to contribute to progression from use to addiction in 

adolescents, but there is undoubtedly a biological basis as well.  Given that nicotine use 

often begins in adolescent years, it is reasonable to speculate that developmental 

changes are important contributors.  Our studies aim to thoroughly investigate the 

biological and pharmacological factors that are critical to nicotine abuse.  It is important 

to begin with the basic CNS physiological and pharmacological effects of nicotine in 

order to fully understand the complexities of its abuse liability.  

C. Molecular and Pharmacological Mechanisms Involved in Nicotine Dependence 

Nicotinic Receptors 

It is clear that nicotine has many central and peripheral effects which potentially 

contribute to its addictive properties.  Acute administration of nicotine elicits various 

central responses including antinociception, hypoactivity, and hypothermia.  Nicotine is 

also known to have effects on other body systems including the cardiovascular (CV) 

and gastrointestinal (GI) systems.  Use of nicotine causes increases in heart rate and 

blood pressure which is a concern for already hypertensive smokers (Benowitz 2003).  

In the GI tract, nicotine is a known to cause smooth muscle relaxation via release of 

nitric oxide (Irie et al. 1991).   Nicotine exerts these physiological effects by binding to 

nicotinic acetylcholine receptors (nAChRs) in the brain and the periphery.  More 

chronic nicotine exposure can lead to physiological dependence as a result of both the 

rewarding and aversive properties induced by the drug.   

Nicotinic acetylcholine receptors can be found in many locations throughout the 

body.  Neuronal receptors are found in the central nervous system (CNS) and the 
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peripheral nervous system (PNS), while neuromuscular receptors are found in 

neuromuscular junctions.  These ionotropic receptors are ligand gated ion channels 

which are pentameric in structure meaning they are comprised of five subunits arranged 

around a central pore.  This central pore allows for the passage of cations such as 

sodium, potassium, and calcium.  Receptors can be a homomeric or heteromeric 

composition of different subunits. The neuromuscular nAChR is composed of two α 

subunits, one β, one δ, and either a γ or ε subunit, while the neuronal nAChR can 

consistent of subunits ranging from α2- α10 and β2- β4 making them much more 

heterogeneous.  With such a wide variety of receptor subtypes, many different 

pharmacological effects can occur upon nicotine administration.   

The binding of a nicotinic agonist to the receptor causes a change in the 

conformational state which leads to activation.  That is, an agonist causes the gated ion 

channel to open rapidly (activation) and then become inactive for a period of time 

(desensitization) before returning to a resting state which is inactive, yet capable of 

reactivation.  Ligand-bound desensitization of the nicotinic acetylcholine receptor was 

first characterized by Katz and Thesleff (Pitchford et al. 1992).  This phenomenon is 

often caused by prolonged or repeated exposure to a drug and results in decreased 

responsiveness of that receptor to a stimulus.  It can further lead to upregulation of 

nAChRs in order to compensate for the lack of response to nicotine.  This compensatory 

mechanism is suggested to contribute to nicotine dependence and addiction (Changeux 

et al. 1998; Buisson and Betrand 2002; Nashmi and Lester 2007).   
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 Many of nicotine’s pharmacological effects are the result of activation of a 

variety of nAChR subtypes.  Although the precise mechanisms of these effects have not 

been elucidated, recent research using genetic knockout models and pharmacological 

ligands has contributed to further understanding.  The majority of nAChRs in the CNS 

contain either α4β2* heteromers or α7 homomers (Changeux et al. 1998).  While it is 

known that five α7 subunits compose the homomeric receptor, the α4β2* heteromers 

can be composed of a variety of additional subunits including α5, α6, or β3 which lead 

to diversity in receptor characteristics.  Several studies have implicated the α4β2* 

subtype, which is present throughout the mesolimbic dopamine pathway, in the 

reinforcing effects of nicotine.  Heteromeric α4β2* nAChRs are localized on 

dopaminergic and GABAergic neurons in the VTA.  Stimulation of dopaminergic 

receptors often results in enhanced dopamine release, whereas the desensitization of 

nAChRs on GABA neurons is thought to attenuate the GABA-mediated inhibitory drive 

(Mansvelder et al. 2002; Cohen et al. 2005; Solinas et al. 2007).  In addition, nicotine 

interacts with nAChRs on glutamate neurons that regulate the activity of DA and 

GABA neurons in the VTA.  Taken together, this pattern of brain pathway activation is 

likely to result in the enhanced rewarding and reinforcing effects which contribute to 

nicotine addiction. 

Indeed, preclinical studies in transgenic mice have shown that elimination of 

either the α4 or β2 subunit attenuates the pharmacological and behavioral effects of 

                                                 
* minor populations of α4β2 nAChRs may contain additional unknown subunits as defined by the asterisk 
(Lukas et al. 1999) 
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nicotine (Picciotto et al. 1998; Marubio et al. 1999).  Specifically, the β2 subunit has 

been shown to be necessary for nicotine-induced conditioned place preference in mice 

(Walters et al. 2006).  In addition, targeted expression of β2 subunits in the VTA of β2-

knockout mice reinstates nicotine-induced DA release (Maskos et al. 2005).   Data has 

confirmed a role for this subtype in nicotinic withdrawal as well.   Pharmacological 

nicotine withdrawal studies demonstrated that utilizing the β2-selective antagonist, 

dihydro-β-erythroidine (DHβE), resulted in anxiety-related behavior and elevations in 

reward threshold, which are measures of affective signs of nicotine withdrawal (Damaj 

et al. 2003; Bruijnzeel et al. 2004; Jackson et al. 2008).    

Molecular Pathways Involved in Drug Dependence 

 One of the main goals in the field of nicotine research is to gain a better 

understanding of the mechanisms which underlie nicotine dependence in order to 

advance current smoking cessation therapies and prevention programs and reduce the 

number of smoking-related illnesses and deaths.  Even though many drugs exhibit 

differing acute actions, the majority of drugs of abuse converge on similar reward 

circuitry in the brain that has been shown to be involved in addiction and dependence.  

The brain contains a specialized pathway, often referred to as the mesocorticolimbic 

(MCL) reward pathway, which has been implicated in many of the rewarding and 

reinforcing effects of drugs of abuse (Nestler 2001; Kobb and Le Moal 2001).  This 

pathway originates in the ventral tegmental area (VTA), near the base of the brain.  

Neurons from this region send projections to target regions in the front of the brain, 

most notably to the nucleus accumbens (NAc) (Nestler 2001; Hyman and Malenka 



www.manaraa.com

 

2001).  Indeed, this circuit is a critical component of reward physiology in that animals 

with lesions in these regions exhibit a loss of drug consumption (Robinson and Berridge 

2001; Nestler 2004).  Dopamine is the most common and essential neurotransmitter 

involved in this pathway.  Nicotine, in particular, is able to activate VTA dopaminergic 

neurons directly via stimulation of nicotinic cholinergic receptors or indirectly via 

stimulation of its receptors on glutamatergic neurons which then innervate dopamine 

cells.  In addition to nicotine, cocaine is also able to elevate dopamine production in 

another manner.  This drug, as well as other psychostimulants, inhibits the return of 

dopamine to the VTA by blocking dopaminergic transporters; thus resulting in an 

accumulation of dopamine in the junction (Nestler 2001). 

 The stimulation of nAChRs by pharmacological agents can lead to many 

downstream consequences.  One of the most prominent and readily released second 

messengers following nAChR activation is calcium.  Calcium can act downstream on a 

number of targets including Ca2+/calmodulin-dependent protein kinases (CaM kinases) 

and protein kinase A (PKA).  This in turn leads to stimulation of the extracellular 

signal-related kinase (ERK) pathway and activation of cAMP response element binding 

protein (CREB) which has been implicated in drug addiction (Brunzell et al. 2003).  

The transcription factor CREB is thought to play a major role in the rewarding 

properties of many drugs of abuse.  In particular, Walters et al. (2005) has shown that 

activation of CREB is necessary for nicotine reward in adult mice as measured by 

conditioned place preference testing.  The involvement of CREB in nicotine withdrawal 

remains more complicated.  Chronic nicotine administration in mice results in decreased 
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CREB phosphorylation in the NAc but increased CREB phosphorylation in the 

prefrontal cortex, while nicotine withdrawal increased CREB phosphorylation in the 

VTA (Brunzell et al. 2003).  In contrast, withdrawal from chronic nicotine in rats 

decreased CREB, phosphorylated CREB, and CRE-DNA binding in the cortex and 

amygdala (Pandey et al. 2001).  The involvement of CREB in reward and withdrawal 

pathways has been studied due to its connection with the formation of dopamine.  

CREB can activate the enzyme, tyrosine hydroxylase (TH), which is required for 

dopamine synthesis.   When more dopamine is produced, reward is thought to increase 

so the molecular players in this pathway are often examined when investigating drug 

dependence.  (See Figure 1 for schematic of pathway).  We have focused on this 

pathway since it remains the main mechanistic pathway which has been implicated 

regarding nicotine addiction.   Other pathways are still possible, but have not been well-

characterized to date.  We have chosen to begin our studies with the nAChRs since they 

are the initial target of nicotine.    
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Figure 1.  Possible schematic pathway for the effects of nicotine.   
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D. Behavioral Models of Nicotine Dependence 

 Animal models allow researchers to investigate basic neurochemical 

mechanisms of drug abuse, factors involved in drug dependence, and potential 

treatment for these problems.  Several behavioral models have been established in order 

to consistently investigate the role of biological factors involved in nicotine 

dependence.  They have also been established due to the prohibitive factors often 

associated with clinical studies such as cost, ethical concerns, and retaining an 

appropriate number of subjects for follow-up visits.  Four critical components of 

nicotine dependence have been featured in animal models and are investigated in our 

studies. 

Reward and Reinforcement 

 Drugs of abuse elicit pleasurable effects which often contribute to their repeated 

use and abuse.  Rewarding properties of nicotine are most commonly assessed through 

either self-administration models or conditioned place preference (CPP) models.  

Conditioned place preference is a method which has been used extensively to assess the 

acute rewarding effects of a drug by pairing it with a particular context (Bardo et al. 

1995; Tzschentke 1998).  Unlike other models, such as self-administration, this model 

does not directly measure drug reinforcement; rather it is a measure of a preference for a 

context which is associated with the drug stimulus.   CPP models allow researchers to 

assess rewarding effects of drugs without facing the technical challenges of establishing 

self-administration in the mouse.  Moreover, as demonstrated throughout the literature, 

there is a reasonable concordance between drugs that produce a CPP and drugs that are 
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self-administered (Bardo and Bevins 2000) and data from this method serves to 

compliment self-administration data.  This model is well-established and several reports 

have concluded that nicotine is able to induce CPP in rodents over a wide range of 

doses and with various routes of administration (Le Foll and Goldberg 2005; Grabus et 

al. 2006; Walters et al. 2006).  This approach is advantageous because it has a short 

duration, does not stress the animal with surgery or extensive training and tests the 

animal in a drug-free state.  

Nicotine Withdrawal 

Rodent models have also been used to study nicotine withdrawal in humans 

since this is a common reason given for relapse after smoking cessation (Piasecki et al. 

2000).   Nicotine infusion is accomplished by various routes of administration such as 

osmotic mini-pumps, repeated injections, i.v. infusions, or through drinking water.  

Withdrawal may be precipitated by pharmacological antagonists or spontaneous 

removal of mini-pumps, promoting physical somatic signs (i.e. tremors, head shakes, 

excessive grooming and ptsosis) and negative affective signs (i.e. anxiety, irritability, 

and depressed mood), which are important determinants in nicotine dependence 

(Hughes et al. 1991; Markou et al. 1998; Damaj et al. 2003; Cohen et al. 2005; Viveros 

et al. 2006).  

Acute Sensitivity 

 Nicotine exerts many pharmacological effects in the peripheral and central 

nervous systems following acute administration.  Initial sensitivity models are useful in 

that they provide information on the immediate response to a drug.  These initial effects 
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can provide insight into the biological systems on which the drug will act as well as any 

individual differences that may be useful in identifying at-risk individuals before they 

become addicted to certain drugs.   

Our lab utilizes a well-characterized battery of tests which assess centrally-

mediated nicotinic effects.  This battery can provide information concerning nicotine 

potency, drug time-course, site of action, and receptor subtypes activated.  Testing 

includes two measures of antinociception, change in body temperature, and a measure 

of locomotor activity.  Commonly, nicotine induces increased antinociception, 

hypothermia, and hypolocomotion in the mouse.  Antinociception, or the lack of pain 

response, is measured using both the tail flick and hot plate tests which are mediated by 

spinal and supraspinal reflexes respectively.  

Tolerance 

 Tolerance can be defined as the capacity of the body to become less responsive 

to a particular substance; usually after chronic exposure to that substance.  This aspect 

of dependence is well-established with nicotine in rodents and humans (Stolerman et al. 

1974; Marks et al. 1983; Perkins et al. 1994).  In effect, if a person is tolerant to a drug, 

such as nicotine, he will require more of that substance in order to achieve satisfactory 

levels of reward or other pleasurable effects.  This often leads to increased drug use and 

can further levels of drug dependence.  As with the withdrawal model, rodent tolerance 

commonly uses mini-pumps to administer nicotine subcutaneously.  Animals are then 

challenged with various doses of nicotine to examine antinociceptive and hypothermic 
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effects.  Tolerance models provide insight into which drugs are more likely to be 

commonly abused due to reduced physiological effects after repeated exposure. 

E. Animal Models of Adolescence 

The period of adolescence offers a particular challenge when developing useful 

animal models.  A great deal of effort has gone into adapting appropriate adult animal 

models to those which accurately reflect adolescent development.  Adolescent animal 

models, which have face (whether a test appears to be a good measure) and predictive 

(degree to which inferences can legitimately be made) validity, have been designed in 

order to better understand the biological factors which are involved in nicotine addiction 

at this age.  Limitations of these models often include deciding appropriate age 

correlations and divisions as well as determining neurobiological correlations.  

Adolescent models must also consider differing drug intake patterns of adolescents, the 

influence of a lack of sexual maturity and assessing proper dosing regimens due to 

pharmacokinetic differences in rodents. 

Three developmental phases of rodent adolescence have been identified: early- 

(PND 21-34), mid- (PND 35-46) and late- (PND 47-59) adolescence (Spear 2000; 

Laviola 2003).   These classifications are based on similarities in physical, social, and 

biological development of both rodents and humans.  While there are some species 

differences and these classifications can vary slightly, these divisions have been 

carefully researched and are considered the standard for research on the adolescent 

period.    
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Behaviorally, many characteristics of the adolescent period are universal across 

species.  These traits are thought to bear adaptive and evolutionary value for all species 

and will allow adolescents to properly transition into adulthood with all the required 

skills.  For example, much like human adolescents, adolescent rodents exhibit an 

increase in the amount of social interaction time and a peak in play behavior (Primus 

and Kellogg 1989).  Another hallmark characteristic of adolescence is increased risk 

taking.  Indeed, over half of adolescents exhibit risk taking behaviors such as drunk 

driving, sex without contraceptives, and use of illegal drugs (Arnett 1992).  Similarly, 

adolescent mice have been noted to exhibit hyperactive behavior in a novel environment 

(Darmani et al. 1996) and a higher degree of novelty seeking as compared to adults 

(Adriani et al. 1998).   

In addition to behavioral consistencies, neural alterations in humans and rodents 

appear to have correlations.  There is a high degree of PFC remodeling noted in both 

human adolescents (Jernigan et al. 1991) and in rats (van Eden et al. 1990).  Moreover, 

there are notable increases in dopaminergic input to the PFC (Kalsbeek et al. 1988) and 

DA transporters (Akbari et al. 1992).   These parallels in behavioral and neural 

development have allowed researchers to develop and refine animal models of human 

adolescence that allow for investigation of this critical period.    

An important limitation of using animal models for adolescent research is that 

the intake behavior of human adolescents is often different from that observed in the 

adult.  It is difficult to mimic a sporadic and unpredictable pattern of human adolescent 

smoking behavior in an animal model which may limit validity of the model to some 
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degree.  It is also important to consider pharmacokinetic differences between adults and 

adolescents.  Adolescents are known to have increased metabolism as compared to 

adults (Trauth et al. 2000) which may require increasing the dose of nicotine so that 

metabolite levels are consistent when testing is being performed and when comparing 

data to that of adults.    

F. Effects of Adolescent Nicotine Exposure 

 It is common for adolescents to first experiment with easily accessible drugs 

such as alcohol and tobacco.  Furthermore, it is also common for this type of drug use to 

lead to the use of more illicit drugs of abuse.  Indeed, nicotine is one of the first and 

most commonly abused drugs in adolescence and is known to be a strong predictor of 

subsequent alcohol and other drug abuse (Kandel et al. 1992).   Several studies have 

demonstrated that a minimal amount of smoking at a young age can lead to nicotine 

addiction and dependence (Benowitz et al. 1994; DiFranza 2007). 

Nicotine exposure during adolescence may have detrimental effects since this is 

a period of high neuronal plasticity and brain development.  Indeed, the level of 

nAChRs can increase in the brain the day after the first exposure to nicotine (Abreu-

Villaca et al. 2003) implying a very rapid timeline for brain remodeling following drug 

exposure.  Furthermore, this nAChR upregulation persists at significant levels one 

month after treatment (Abreu-Villaca et al. 2003).  Moreover, animal studies have 

demonstrated that adolescent nicotine exposure can cause alterations in the cholinergic, 

serotonergic, dopaminergic, and noradrenergic systems (Kelley and Middaugh 1999; 

Trauth et al. 1999) which all have roles in the reinforcing effects of other drugs of 
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abuse.  Among these effects are neuronal cell death and changes in nicotinic receptor 

expression (Trauth et al. 2000).  Perhaps most important, the behavioral responses of 

other drugs of abuse are known to be altered by adolescent nicotine exposure suggesting 

a possible alteration in the reward system.  Reductions in the rewarding value of abused 

drugs are associated with increased self-administration, which implies that early 

nicotine exposure might increase the risk for subsequent substance abuse problems.  

 Studies in Chapter 7 will examine the effects of nicotine on cocaine-induced 

reward and sensitivity.  Several groups have begun to explore the theory that adolescent 

nicotine exposure may alter cocaine-induced effects later in development, but results 

have been inconsistent to date.  Kelley and Rowan (2004) found that C57BL/6J mice 

demonstrated a decrease in cocaine-induced reward as measured by CPP after 25 days 

of adolescent nicotine exposure.  However, they also noted that this exposure led to an 

increase in cocaine’s motor activating effects.  In rats, a study by McQuown et al. 

(2006) showed that a low dose of nicotine treatment for four days in adolescence 

enhanced the reinforcing effects of cocaine in an i.v. self-administration model using a 

FR1 schedule.  Similarly, rats given nicotine from PND 35 to 44 demonstrated an 

enhancement of cocaine-induced reward using a CPP paradigm (McMillen et al. 2005).  

Based on the literature, it appears that nicotine exposure can lead to alterations in 

cocaine sensitivity.   However, studies have limited implications since measures have 

not been evaluated under the same conditions and specific characterization of dose 

effects, duration of exposure, and route of administration have not yet been 
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investigated.  The reasons for this “cross-sensitivity” are yet to be fully understood, but 

mechanisms such as dopamine neurotransmission could be involved.  

G. Dissertation Objectives 

 The work in this dissertation addresses a three part hypothesis which will 

contribute to the understanding of age-dependent differences in nicotine dependence.  

To date, few studies have examined adolescence as a heightened period for 

vulnerability to drug addiction.  However, adolescent drug abuse is becoming a large 

problem in the United States as teenagers are developing and maturing at a faster pace 

than they did 10 to 20 years ago.  More young teenagers and even pre-teens are 

experimenting with drugs and this experimentation often begins with cigarette smoking.  

These studies demonstrate a full characterization of nicotine dependence in various age 

groups and both sexes, examine behavioral and molecular mechanisms which may 

underlie these differences, and investigate the effects of adolescent smoking on future, 

and perhaps long-term, drug abuse.   

 Overall, we hypothesized that vulnerability to nicotine in adolescence is due to a 

shift in the balance between two key components of nicotine dependence, namely 

reward and withdrawal, and that this shift is due to nicotine-induced, region-specific 

changes in mesolimbic reward pathways.  Furthermore, we predicted that nicotine 

exposure in adolescence would lead to long lasting changes in nicotine behavior and 

dependence as well as the rewarding mechanisms of other drugs of abuse.   

Our first specific aim was to characterize the behavioral effects of nicotine using 

two key measures of nicotine dependence: reward and withdrawal.  These studies were 
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conducted in both the male and female sex.  Based on preliminary data and previous 

literature, we hypothesized that adolescents would demonstrate increased vulnerability 

to nicotine dependence as compared to adults and that this vulnerability would be sex-

dependent.   

The second specific aim was to examine the behavioral and molecular 

mechanisms that may be involved in nicotine dependence pathways using both in vivo 

and in vitro techniques.  Our in vivo studies focused on characterizing levels of acute 

sensitivity and tolerance to nicotine between adult and adolescent mice.  After that, we 

aimed our in vitro studies at the initial molecular target of nicotine: neuronal nicotinic 

acetylcholine receptors.  To this aim, we investigated changes in the function and 

quantity of receptors using rubidium efflux assays and nAChR binding studies, 

respectively.  We also examined differences in levels of nicotine-induced dopamine 

release from both ages; an important measurement of nicotine reward and 

reinforcement.  Our hypothesis was that adolescents would exhibit an increase in either 

receptor number or function, if not both, which would contribute to our understanding 

of increased nicotine addiction vulnerability.   

The third and final specific aim was to examine whether adolescent nicotine 

exposure resulted in long-lasting changes in levels of nicotine reward and withdrawal.  

Both dose and duration of nicotine exposure were investigated since patterns of 

exposure to nicotine have been shown to be an important factor in becoming dependent 

(McNeill 1991).  In addition to investigating this type of exposure on nicotine 

dependence, we also examined the effects of adolescent nicotine exposure on cocaine 
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sensitivity.  Rewarding effects, changes in locomotor activity, and locomotor 

sensitization to cocaine were evaluated.  For this aim, we hypothesized that exposure to 

nicotine during early adolescence would cause persistent changes in both nicotine- and 

cocaine-related behavior in adulthood.  Specifically, perception of nicotine- and 

cocaine-induced reward will be enhanced due to long-lasting effects on the 

mesocorticolimbic reward pathway.   

In summary, data from this study are the first to fully evaluate a battery of 

nicotine dependence models in the same setting and conditions in different sexes and 

ages.  Furthermore, it investigated possible in vivo and in vitro mechanisms that could 

be used in developing more effective smoking cessation strategies aimed at specific 

audiences.  Lastly, these studies provided new insight into the risks of adolescent 

smoking.  We have shown that experimentation with cigarette smoking may have long-

lasting effects on future drug dependence; thus demonstrating the importance of 

effective prevention messages and smoking deterrents that should be made available to 

youth. 
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BEHAVIORAL ASSESSMENT OF ADOLESCENT AND ADULT MICE IN 
NICOTINE DEPENDENCE MODELS OF REWARD AND WITHDRAWAL 
 

A. Introduction  

While a few studies have investigated various aspects of nicotine dependence in 

both adult and adolescent rodents, there is no comprehensive study examining multiple 

features of nicotine dependence under the same experimental conditions.  Since 

behavioral effects of nicotine may vary with the paradigm employed, it is important to 

conduct studies where various behavioral responses are evaluated in the same setting 

and in parallel.   The goal of this study was to fully characterize both age- and sex-

related differences in nicotine dependence models of reward and withdrawal in mice.   

  Nicotine elicits consistent rewarding effects and withdrawal signs which are 

characteristic of dependence.  Conditioned place preference (CPP) procedures have 

been widely used as a measure of the potential rewarding effects of many different 

psychoactive drugs (Bardo et al. 1995; Tzschentke 1998).  Several groups have 

established a nicotine-induced CPP in rodents (Biala et al. 2003; Walters et al. 2005).  

Unlike other models, such as self-administration, this model does not directly measure 

drug reinforcement; rather it is a measure of a preference for a context which is 

associated with the drug stimulus.  However, as demonstrated throughout the literature, 

there is a reasonable concordance between drugs that produce a CPP and drugs that are 

self-administered (Bardo and Bevins 2000) and data from this method serve to 

complement self-administration data.  CPP is advantageous because the animals are 

 25 
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tested in a drug-free state and it does not require extensive surgical procedures which 

are stressful to the animal.   

In adult rodents, nicotine withdrawal has been well-characterized.  Malin et al. 

(1992, 1994) demonstrated increased numbers of abstinence signs following nicotine 

cessation and following administration of nicotinic antagonists in rats.  Similar effects 

have been noted in mice.  An increase in withdrawal signs was reported in a number of 

studies (Isola et al. 1999; Damaj et al. 2003) as well as hyperalgesia (Damaj et al. 2003) 

upon both spontaneous withdrawal (no antagonist) and precipitated withdrawal 

(antagonist) testing in mice of different genetic backgrounds.    

Only a limited number of studies have investigated these two aspects of nicotine 

dependence in the adolescent rodent.  Vastola (2002) reported that in the CPP paradigm 

only rats conditioned during adolescence showed preference to nicotine; however, to 

date, there have been no studies which have investigated this model of reward in the 

mouse.  Adolescent nicotine withdrawal has been examined in a rat model as well.  

O’Dell et al. (2006) reported decreased somatic signs in the adolescent rat as compared 

to the adult rat.  In addition, Shram et al. (2006) demonstrated that early adolescent rats 

do not develop avoidance to saccharin solutions which have been paired with nicotine 

while adults do develop this avoidance.  The present study will examine both reward 

and withdrawal paradigms in the mouse model in order to extend the current findings. 
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B. Methods 

General methodology for all studies 

Choice of Age, Sex, and Strain 

 As previously mentioned in Chapter 1, adolescence in the rodent is defined 

using various factors informative of developmental transitions in human adolescents.  

Our studies will use the standard divisions that have been defined by previous studies in 

rodents: early- (PND 21-34), mid- (PND 35-46) and late- (PND 47-59) adolescence 

(Spear 2000 and Laviola 2003).   

 ICR mice were used in all studies.  This strain is an outbred stock with a fast 

growth rate which is conducive to our experimental procedures.  It has been used 

extensively in toxicology and pharmacology studies.   All animals were ordered from 

Harlan Laboratories (Indianapolis, IN).  We are aware that litter effects, particularly in 

the adolescent age, may present confounds in our data analysis.  To ensure that this was 

not the case, we requested that our animals were obtained from different litters.  We 

also ordered animals at different times to minimize this issue.  Animals were maintained 

in an American Association for Accreditation of Laboratory Animal Care approved 

facility and the study was approved by the Institutional Animal Care and Use 

Committee of Virginia Commonwealth University. 

This chapter focuses on the behavioral characterization of nicotine dependence 

in both male and female mice.  Even though sex differences were apparent, further 

studies focused solely on the male sex.  We felt that it was beyond the scope of this 
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project to properly examine the changes in hormonal levels during adolescence and 

decided to center our research on male mice so that we could fully characterize this sex.   

Drugs 

(-)-Nicotine bitartrate and mecamylamine hydrochloride were purchased from 

Sigma Chemical Company (Milwaukee, WI).  All doses are expressed as free base. 

Nicotine-induced conditioned place preference  

Place conditioning boxes consisted of two distinct sides (20 cm X 20cm X 20 

cm).  A partition separated the two sides with an opening that allowed access to either 

side of the chamber, and this partition could be closed off for pairing days.   

Handling habituation: On Wednesday – Friday of the week prior to the start of the 

place conditioning procedure, mice in the CPP studies were handled once per day for 

approximately two min each.  Handling experience plays an important role in the ability 

of nicotine to produce a conditioned place preference (Grabus et al. 2006). 

Preconditioning Phase: On day 1, animals were placed in the boxes and allowed to 

roam freely from side to side for 15 min, and time spent in each side was recorded.  

These data were used to separate the animals into groups of approximately equal bias.  

Conditioning Phase: Animals were paired for 20 min with the saline group receiving 

saline in both sides of the boxes and drug groups receiving nicotine (0.05, 0.1, 0.5, 0.7 

or 1 mg/kg) on one of the sides and saline on the opposite side.  Drug-paired sides were 

randomized among all groups.  Conditioning lasted for 3 days, with animals in the drug 

group, receiving drug each day. 
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Test Phase: On the test day, no injections were given.  Time spent on each side was 

recorded, and data were expressed as time spent on drug-paired side minus time spent 

on saline-paired side.  A positive number indicated a preference for the drug-paired 

side, while a negative number indicated an aversion to the drug-paired side.  A number 

at or near zero indicated no preference for either side. 

Mecamylamine-Precipitated Withdrawal Studies 

Naïve mice were implanted with osmotic mini-pumps filled with either saline or 

nicotine (48 mg/kg/day) on day 1.  The mini-pumps were surgically implanted s.c. 

under sterile conditions with pentobarbital anesthesia (35 mg/kg, i.p.).  An incision was 

made in the back of the animals, and a pump was inserted.  Animals were sutured and 

allowed to recover before being returned to their home cages.  On the morning of day 8, 

mice were injected s.c. with 2.0 mg/kg of mecamylamine, a nicotinic antagonist.  Ten 

minutes following injection with the antagonist, mice were tested for withdrawal signs 

in the following manner: 5 min for anxiety-like behavior (on the elevated plus maze 

described below), 20 min observation of somatic signs (paw tremors, head shakes, 

backing, body tremors, ptosis), hyperalgesia (hot-plate test), and 30 min in locomotor 

activity chambers. 

 Elevated plus maze.  The EPM is an apparatus consisting of two closed arms and two 

open arms. The mouse is placed in the center of the maze and allowed to roam freely 

between the open and the closed arms for 5 min.  The number of seconds the mouse 

spends in the open arms is counted by a counting device attached to beams located on 
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both arms and in the middle of the plus maze.  Scores are based on time spent in the 

open arms as an indication of anxiety-like behavior. 

Hot-Plate Test.  Supraspinal antinociception was assessed by the hot-plate method.  

Briefly, each mouse was injected s.c. with nicotine and tested 5 min after injection.  

Mice were placed on a hot plate (Thermostat Apparatus, Columbus, OH) maintained at 

55˚C.  Latency to reaction time (jumping or paw licking) was recorded.  A control 

response (8-12 sec) was determined for each mouse before treatment and test latency 

was determined after drug administration.  A maximum latency of 40 sec was imposed.  

Antinociceptive response was calculated as %MPE, where %MPE = [(test - control)/(40 

- control) x 100].  

Locomotor Activity.  Mice were placed into individual Omnitech photocell activity 

cages (Columbus, OH; 28 x 16.5 cm) 10 min after s.c. administration of nicotine.  

Interruptions of the photocell beams (two banks of eight cells each) were then recorded 

for the next 30 min.  Data are expressed as number of photocell interruptions.  

Spontaneous Withdrawal Studies 

Naïve mice were implanted with osmotic mini-pumps filled with either saline or 

nicotine (48 mg/kg/day) for 7 days (as described previously).  On day 8, mice were 

lightly anesthetized using ether and mini-pumps were removed.  A small incision was 

made on the back of the neck in order to remove the mini-pump and the wound was 

closed with a suture.  Twelve hours following removal of the mini-pump, mice were 

evaluated with the same withdrawal measures described above.  

Repeated Injection Withdrawal Model 
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Naïve mice were injected s.c. with 2.0 mg/kg of nicotine three times a day for 

four days (injections were given at 8:00am, 12:00pm, and 4:00pm).  On the morning of 

day 5, mice received 2.0 mg/kg of mecamylamine s.c. and were evaluated 10 min later 

in the same withdrawal measures previously described. 

Statistical analysis   

Statistical analysis of all behavioral studies was performed with mixed-factor 

ANOVA with post-hoc Tukey’s test when appropriate.  P-values of <0.05 were 

considered to be statistically significant.     

C. Results 

Nicotine-induced Conditioned Place Preference 

The ability of nicotine to produce an effect in conditioned place preference in 

both ages and sexes is presented in Fig. 2.  As expected, adult and early adolescent 

animals injected with saline in both chambers, showed no preference for either 

chamber.   Compared to saline controls, male adult mice conditioned with the 

intermediate dose of 0.5 mg/kg nicotine showed a significant place preference.  There 

were no significant preferences seen with lower doses of 0.05 or 0.1 mg/kg, and the 

effect disappeared at the higher doses of 0.7 and 1.0 mg/kg nicotine.  In contrast, 

nicotine induced a significant place preference in adolescent mice at low doses of 

nicotine (0.05 and 0.1 mg/kg) as well as at the 0.5 mg/kg dose.  Similar to the adult 

mice, the effect disappeared at the higher doses of 0.7 and 1.0 mg/kg nicotine.   

In female mice, a 2 x 2 ANOVA (age x dose) revealed a significant interaction. 

Upon further post-hoc analysis, it was found that compared to saline controls, adult 
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mice conditioned with the doses of 0.7 and 1.0 mg/kg nicotine showed a significant 

place preference; whereas no significant preferences developed with lower doses of 0.1 

or 0.5 mg/kg.  In contrast, nicotine produced a significant CPP in adolescent mice at the 

intermediate dose of 0.5 mg/kg; an inactive dose in adults.  Moreover, adolescents 

experienced CPP at a narrow dose range and the dose-response curve is shifted to the 

left.   Locomotor activity was also recorded and did not differ between the age groups. 

(Adults: 988 ± 32, Adolescents: 1012 ± 44).  
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Figure 2. Nicotine-induced conditioned place preference in male and female mice.  
Adult (PND 70) and early adolescent (PND 21) were injected s.c. with various 
doses of either saline or nicotine.  Positive scores indicate a preference for nicotine 
while negative scores are indicative of aversion to the drug.  Scores at or near zero 
indicate neither preference nor aversion.  Each bar represents the mean ± SEM of 
8-9 mice.  *p<0.05 from saline group. 
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Age-Dependent Acquisition of Conditioned Place Preference 

 One possible explanation for the enhanced preference seen in adolescent mice is 

the rate of CPP acquisition.  It has been suggested that adolescents have an increased 

rate of learning as compared to adults.  To examine this possibility, we conducted a 

CPP study in which subsets of mice were conditioned with nicotine for either 1, 2, or 3 

sessions and were subsequently tested for CPP the following day using a dose of 0.5 

mg/kg nicotine since this dose was active in both ages in previous experiments.  This 

experiment was only performed in male mice as this sex was determined to be the focus 

of our studies.  Figure 3 shows the results of this study which demonstrate that both 

adult and adolescent mice acquired a significant preference for nicotine after three 

conditioning sessions.  Neither one nor two sessions elicited a preference for either 

compartment.  
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Figure 3.  The rate of CPP acquisition in adult and adolescent mice.  Male ICR 
were conditioned for 1, 2, or 3 sessions with 0.5 mg/kg nicotine and were 
subsequently evaluated for nicotine-induced preference. Bars represent the mean ± 
SEM of 6-8 mice. * p<.05 as compared to respective saline control.   
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Precipitated Withdrawal Model 

Males 

Mecamylamine challenge to animals implanted with nicotine-filled mini-pumps 

represents a highly reproducible precipitated withdrawal syndrome.  Measures of 

precipitated withdrawal in adult and adolescent male mice are shown in Fig. 4.   Two 

types of withdrawal signs were evaluated: physical (somatic signs, hyperactivity, and 

hyperalgesia) and affective (anxiety-like behavior in the plus maze).  In males, 

adolescent mice displayed fewer withdrawal signs in all four measures as compared to 

adults.  Adolescents displayed a lower number of somatic signs (Fig. 4a) as compared to 

adults.  In the elevated plus maze (Fig. 4b), only adults displayed withdrawal as 

indicated by a significant decrease in time spent in the open arms of the maze, an 

indication of anxiety-like behavior.  Similarly, in the hot-plate test (Fig. 4c) and 

locomotor activity test (Fig. 4d), only adult mice displayed hyperalgesia and 

hyperactivity respectively. 
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Figure 4. Mecamylamine-precipitated withdrawal in adult (PND 70) and 
adolescent (PND 21) male mice.  Mice were chronically infused with nicotine at 48 
mg/kg/day or saline for 7 days.  On day 8, mice were injected with 2.0 mg/kg of 
mecamylamine or saline s.c. to precipitate withdrawal and evaluated in four tests: 
(a) somatic signs, (b) elevated plus maze, (c) hot plate analgesia test, and (d) 
locomotor activity. * p<0.05 from saline group and #p<0.05 from adult nicotine 
treatment. Each point represents the mean ± S.E. of 12 mice.  MP=mini-pump. 
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Females 

Female mice displayed an opposite trend in withdrawal.  In somatic signs (Fig 

5a), results showed that there was a significant 2 way interaction (age x treatment), 

indicating that both ages demonstrated significant withdrawal signs, but the intensity of 

withdrawal was age-dependent.  Indeed, adolescent females displayed significantly 

higher somatic signs as compared to adults as determined through post-hoc analysis.  In 

the hot plate analgesia test (Fig. 5c), there was no significant interaction.  However, 

adolescents with nicotine mini-pumps displayed a significant attenuation in analgesia 

upon treatment with mecamylamine, indicative of withdrawal, while adults failed to do 

so (p=.08).  Adolescents also showed significant withdrawal in hyperactivity (Fig. 5d), 

while adult mice did not, but no significant interaction was found.   
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Figure 5. Mecamylamine-precipitated withdrawal in adult (PND 70) and 
adolescent (PND 21) female mice.  Mice were chronically infused with nicotine at 
48 mg/kg/day or saline for 7 days.  On day 8, mice were injected with 2.0 mg/kg of 
mecamylamine or saline s.c. to precipitate withdrawal and evaluated in four tests: 
(a) somatic signs, (b) elevated plus maze, (c) hot plate analgesia test, and (d) 
locomotor activity. * p<0.05 from saline group and #p<0.05 from adult nicotine 
treatment. Each point represents the mean ± S.E. of 12 mice.  MP=mini-pump. 
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Spontaneous Withdrawal Model 

Males 

While the mecamylamine-precipitated withdrawal model revealed clear 

differences between adolescents and adults, the question arises as to whether 

adolescents and adults have identical sensitivities to mecamylamine.  In order to 

investigate this possibility, spontaneous withdrawal studies were carried out.  In the 

spontaneous withdrawal model, mini-pumps were removed on day 8 and no drugs were 

used to elicit withdrawal behaviors.  As shown in Fig. 6, both adult and adolescent male 

mice displayed a significant increase in the number of somatic signs after chronic 

treatment with nicotine; however, adolescent mice had significantly fewer of these signs 

as compared to adults (Fig. 6a).  Results were similar for the hot-plate (Fig. 6c) and 

locomotor activity (Fig. 6d) tests which confirmed the data from the precipitated 

withdrawal model.  Only adult mice displayed affective withdrawal signs in the 

spontaneous model as shown by the decrease in time spent in the open arms of the 

elevated plus maze (Fig. 6b).   
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Figure 6.  Spontaneous withdrawal in adult (PND 70) and adolescent (PND 21) 
mice.  Male mice were chronically infused with nicotine at 48 mg/kg/day (dark 
bars) or saline (cross-hatched bars) for 7 days.  Twelve hours after mini-pumps 
were removed, mice were tested for: (a) somatic signs and (b) elevated plus maze.  
Each point represents the mean ± S.E. of 12 mice.  * p<0.05 from saline group and 
# p<0.05 from adult nicotine treatment.  MP = mini-pump 
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Females 

 As shown in Fig. 7a, females also exhibited significant somatic signs of 

withdrawal, but adolescents had a significantly greater number of signs than did adults.  

Furthermore, only adolescents displayed significant hyperalgesia and hyperactivity 

during the withdrawal testing (Fig. 7c and 7d) which is consistent with data from 

precipitated withdrawal studies.   
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Figure 7. Spontaneous withdrawal in adult (PND 70) and adolescent (PND 21) 
female ICR mice.  Mice were chronically infused with nicotine at 48 mg/kg/day 
(grey bars) or saline (open bars) for 7 days.  Twelve hours after mini-pumps were 
removed, mice were tested for: (a) somatic signs and (b) elevated plus maze (c) hot 
plate analgesic test, and (d) locomotor activity.  Each bar represents the mean ± 
S.E. of 12 mice. * p<0.05 from saline group and # p<0.05 from adult nicotine 
treatment.  MP = mini-pump 
 

 

 

 

 

 

  



www.manaraa.com

  44 

Repeated Injection Withdrawal Model 

Males 

 One of the limitations of mini-pumps is the inability to alter drug delivery 

during the exposure period, particularly when adolescents and adults are gaining weight 

at different rates.  Therefore, we replicated the above studies with repeated injections 

based on the daily weights of the animals.  The repeated injection model confirmed our 

previous withdrawal results with mini-pumps as shown in Fig. 8.   Hyperactivity is 

demonstrated only by adult mice in the locomotor activity test (Fig. 8d).  Furthermore, 

in the hot-plate test (Fig. 8c), adult mice displayed hyperalgesia while adolescent mice 

failed to exhibit this effect.   In the affective sign of withdrawal, only adults exhibited 

anxiety-like behavior in the elevated plus maze (Fig. 8b). 
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Figure 8.  Withdrawal following repeated injections in adult (PND 70) and 
adolescent male (PND 21) mice.  Mice were injected with saline or 2.0 mg/kg of 
nicotine s.c. three times a day for four days.  Sixteen hours following the last 
injection, mice were injected with 2.0 mg/kg of mecamaylamine or saline s.c. and 
evaluated for: (a) somatic signs (b) elevated plus maze (c) hot plate analgesia and 
(d) locomotor activity. Each point represents the mean ± S.E. of 10 mice.  * p<0.05 
from saline group.     
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Females 

The repeated injection model was also conducted in female mice as shown in 

Fig. 9.  As with the precipitated model, adolescent mice displayed a significant increase 

in somatic signs as compared to adults (Fig. 9a).  Unexpectedly, in the elevated plus 

maze (Fig. 9b), adolescents showed a decrease in anxiety-like behavior while adults had 

no change from control animals.   In the hot-plate test, adolescent mice displayed 

significant hyperalgesia (Fig. 9c) while adults showed no indication of withdrawal.  

Surprisingly, no hyperactivity was seen in the locomotor activity test (Fig. 9d).  The 

overall intensity of this test was lower than normal which may be attributable to stress 

induced by the multiple injections used in this model. 
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Figure 9. Withdrawal following repeated injections in adult (PND 70) and 
adolescent (PND 21) female ICR mice.  Mice were injected with saline or 2.0 mg/kg 
of nicotine s.c. three times a day for four days.  Sixteen hours following the last 
injection, mice were injected with 2.0 mg/kg of mecamaylamine or saline s.c. and 
evaluated for: (a) somatic signs and (b) elevated plus maze (c) hot plate analgesic 
test, and (d) locomotor activity. Each bar represents the mean ± S.E. of 10 mice.   
* p<0.05 from saline group and # p<0.05 from adult nicotine treatment. 
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D. Discussion 

There is little question that social and environmental factors play significant 

roles in initiation of tobacco use. While these factors contribute to progression from use 

to addiction, there is undoubtedly a biological basis as well.  Given that nicotine use 

often begins in adolescent years, it is reasonable to speculate that developmental 

changes are important contributors.  These changes may impact important aspects of 

nicotine dependence such as reward and the magnitude of withdrawal.  The goal our 

first study was to investigate both age- and sex-related differences in nicotine 

dependence using behavioral rodent models.  From our results, it appears that reward 

and withdrawal are two key components of adolescent nicotine dependence which may 

have implications in adolescent vulnerability to nicotine addiction.  For simplicity, the 

following discussion will discuss age differences in each sex individually before 

addressing the issue of sex differences. 

Our data show that adolescent male mice are more sensitive to nicotine’s 

rewarding effects than adult male mice in the CPP model.  Several factors could explain 

the differences in nicotine potency; that is to say that different concentrations of 

nicotine may result in certain effects at one age while not at another age.  One such 

factor is differences in motor function between adult and adolescent mice.  However, 

locomotor activity data suggests no differences in motor function (Figure 10).  

Alternatively, the conditioning session and duration might have been optimal for 

adolescents but not for adults at a low dose of nicotine.  Varying the duration of the 

sessions may alter the development of place preference at lower doses in adults and 
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adolescents.  However, previous studies have tested a variety of conditioning sessions 

and durations and have not identified this as a confounding factor (Belluzzi et al. 2004).  

An additional factor when using CPP involves contextual learning and memory.  It is 

possible that adolescents display increased learning as compared to adults.  Our 

acquisition study (Figure 3) rules out this possibility in that we showed no difference in 

the rate of CPP acquisition between adults and adolescents.   Finally, it is possible that 

pharmacokinetic differences between adult and adolescent rodents could explain the 

different potencies.   If this is the case, adolescents are reported to have increased 

metabolism (Trauth et al. 2000); this however would translate into a decrease, not an 

increase, in the rewarding effect of nicotine.  Given that metabolism is not a largely 

contributing factor, our data suggest that pharmacological factors are responsible for the 

enhanced rewarding effect from nicotine conditioning in adolescent rodents.  

Data from our withdrawal study showed that male adolescent mice displayed 

decreased withdrawal signs in three different somatic measures and one affective 

measure.   However, results should be interpreted with caution because of several 

possible confounding factors.  Although the use of mini-pumps allows for a minimal 

amount of stress to be placed on the animal, it will not take into account the fact that 

adolescent animals display a growth rate much faster than that of adults.  Since the dose 

of nicotine is based on body weight at the beginning of the experiment, it could be 

argued that the younger mice are not receiving a dose of nicotine that is consistent with 

that of the adult.  For this reason, we also evaluated withdrawal using a repeated 
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injection model that was based on the animal’s daily weight.  In both studies it was 

found that withdrawal signs were attenuated in adolescent animals.   

Another factor that could be playing a role is that adults and adolescents could 

have differing sensitivities to mecamylamine.  In order to investigate this possibility, we 

conducted a spontaneous withdrawal experiment in which mecamylamine was not used 

to precipitate withdrawal.   Again, similar and consistent results were found in this 

study with adolescent animals displaying a decrease in the intensity of withdrawal 

signs.  Collectively, these studies suggest a minor role for the two above factors in the 

withdrawal differences.   

Overall, our data have significant implications.  First, we have shown that 

adolescents, when given the same level of nicotine as adults, express withdrawal signs 

which are an important observation from a clinical perspective.  Although the intensity 

of nicotine withdrawal is less than that of the adult, this finding confirms work in 

clinical studies showing that adolescent smokers exhibit signs of nicotine dependence.  

It is also interesting to note that adolescent smoking behavior is not consistent with that 

of adults and it is likely that their actual nicotine intake is lower.   In this regard it is 

difficult to make a valid assessment of how much withdrawal symptoms contribute to 

dependence for adolescents.  In addition to withdrawal signs, we have shown that 

during adolescence positive rewarding effects of nicotine are enhanced in the male sex.   

It could be argued that these positive effects contribute more to the enhanced 

vulnerability to nicotine addiction.  During the adolescent period there is a high desire 
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for immediate positive reinforcement without proper assessment of risk which suggests 

that adolescence may be a critical period for the development of nicotine addiction. 

Female studies in nicotine dependence showed characteristically different results 

than those from male studies.  It is well known that the incidence of smoking among 

women has changed dramatically over the past few decades.  Moreover, it has become 

clear in recent times that females experience considerable difficulty in quitting smoking 

(Perkins et al. 1999; Field and Duka 2004; Leventhal et al. 2007).  The goal of this 

study was to identify the properties of nicotine that might explain differences in 

adolescent and adult female behavioral responses to this drug.  

The results from our CPP study show age-dependent differences in nicotine-

induced reward sensitivity in females.  Significant preference was observed at a dose of 

0.5 mg/kg in adolescent mice while adult mice displayed rewarding effects at 0.7 and 

1.0 mg/kg demonstrating differences in the range of preference.   It appears that 

adolescents display an enhanced sensitivity to nicotine’s rewarding effects at lower 

doses than adults. However, this may only play a minor role in overall dependence due 

to the narrow dose-response curve.  Once again, nicotine-induced differences in 

locomotor activity between adult and adolescent mice may cause the observed 

differences.  However, as stated previously, data for locomotor activity were collected 

and no significant differences were found (Figure 11).  It is also possible that 

pharmacokinetic differences between adult and adolescent rodents could explain the 

different potencies.  It is well-established in adult rodents that sex and age can affect 

nicotine metabolism.   Although some reports suggest that adolescents have an 
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increased metabolism (Adriani et al. 2002; Klein et al. 2004), our data suggest that this 

change in metabolism does not play a major role in the differences seen in our studies 

since the acute effects are not consistent across all measures (this is will be further 

discussed in Chapter 3).  

Nicotine withdrawal studies in the female sex indicate that adolescents have 

increased physical withdrawal symptoms (somatic signs, hyperalgesia, and 

hyperactivity) as compared to adult females.  However, no differences in affective 

withdrawal signs (anxiety-like behavior) were observed.  This enhanced withdrawal 

intensity is likely to adversely affect adolescents who are attempting to quit smoking.  

In agreement with our rodent studies, clinical findings report that women are less likely 

to quit smoking successfully due to high withdrawal effects (Leventhal et al. 2007).  For 

these reasons, treatment strategies that focus on alleviating these negative withdrawal 

symptoms are likely to be the most effective in female smokers, particularly in 

adolescents.  A possible cause for this increase in withdrawal intensity is the higher rate 

of metabolism in adolescents (Trauth et al. 2000), however, as previously stated, 

metabolism is not likely to be the most important contributor to this difference.   In 

addition, data has shown that sex hormones are able to modulate the effects of nicotine 

which may contribute to differences seen between male and female rodents (Damaj 

2001).  However, this possibility is also unlikely given that female adolescents are not 

sexually mature at this stage of development. 

The current study, as well as previous research (Trauth et al. 1999; Adriani et al. 

2004; O’Dell et al. 2006; Shram et al. 2006) suggests that adolescence is a critical 
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period for vulnerability to nicotine dependence in both male and female adolescents.  

Nicotine dependence is based on the balance between the positive and negative effects 

of nicotine.  Certain theories of nicotine dependence have suggested that some people 

smoke in order to cope with negative withdrawal symptoms, while others smoke for 

reward and pleasure.  Our data suggest that negative withdrawal signs are more strongly 

associated with nicotine dependence than rewarding effects in female adolescents.  

However, in males it appears that reward may play a larger role.  Development of 

treatment strategies that are tailored to youth are needed in order to combat the growing 

problem of adolescent smoking.  It is important to note that data from this study show 

that an opposite association was seen in males and females suggesting that smoking 

cessation therapies will not necessarily be equally efficacious for each sex at an early 

age.   Furthermore, a comparison of adult withdrawal reveals that males exhibit a 

greater intensity of nicotine-induced withdrawal signs as compared to females, but also 

experience enhanced positive and rewarding effects of nicotine. 

 Taken together, these studies have important implications for the mechanisms 

of nicotine dependence in adolescence.  Several behavioral and molecular mechanisms 

may explain these differences.  Differences in activation, function, and regulation of 

various targets of nicotine, such as nAChRs, are likely to be involved.  We decided to 

investigate these possibilities by using both in vivo and in vitro approaches.   

It is possible that there are innate differences in the acute sensitivity to nicotine 

between adults and adolescents.  Furthermore, differences in tolerance could help to 

explain our behavioral observations.  Therefore we examined these two aspects of 
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dependence using in vivo models.   Additionally, it is possible that functional properties, 

distribution, and number of nAChRs differ between adult and adolescent rodents.  It is 

also possible that nicotine exposure during early adolescence is altering the neuronal 

pathways which are still developing in young animals.  For example, the dopaminergic 

system is still developing during the adolescent period (Spear 2000).  Many studies 

have shown that upon activation of nAChRs, dopamine is released and can act to 

modulate rewarding effects (Wonnacutt 1997).  It is possible that levels of dopamine 

release differ in the adult and adolescent, a factor that may contribute to the differences 

seen in levels of reward using the CPP model.   In order to answer these questions, we 

took an in vitro approach and used a variety of molecular assays to investigate these 

targets.  

Indeed, current research implies that adolescence is a critical period for 

acquiring nicotine dependence.  Since adolescent smokers have been shown to have a 

more difficult time quitting than smokers who begin in adulthood (Colby et al. 2000), it 

is critical to understand why this timeframe is especially vulnerable to addiction.  A 

more in depth investigation of these behavioral and molecular mechanisms will be 

further addressed in Chapters 3 and 5. 
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IN VIVO PHARMACOLOGICAL MECHANISMS INVOLVED IN NICOTINE 

DEPENDENCE 
 
A. Introduction 

 Data from Chapter 2 indicated that two key components of nicotine dependence, 

namely reward and withdrawal, have differing pharmacological profiles in early 

adolescent and adult mice.  Various mechanisms could be involved in these age 

differences and determining those which play the greatest role will allow a more 

comprehensive understanding of this behavior.  To this aim, we have examined two 

possible in vivo pharmacological mechanisms which are known to be involved in drug 

dependence: acute sensitivity and tolerance.   

Acute sensitivity models are useful in that they provide information on the 

immediate response to a drug and could reflect differences in nicotine receptor 

activation and function.  In addition, these initial effects can provide insight into the 

biological systems on which the drug will act as well as any individual differences that 

may be useful in identifying at-risk individuals before they become addicted to certain 

drugs.   

Tolerance studies usually allow the detection of the capacity of the body to 

become less responsive to a particular substance; usually after chronic exposure to that 

substance and could reflect differences in the receptor regulation and consequent signal 

transduction mechanisms after chronic exposure to a drug.  Tolerance is likely to 

contribute to repeated nicotine use and lead to physical dependence.  If adolescent and 

adult rodents display differences in levels of tolerance or immediate drug sensitivity, 
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this will provide insight into the underlying behavioral differences in reward and 

withdrawal models.   

Previous studies have shown that nicotine administration elicits several 

consistent acute effects including hyperalgesia (Marubio et al. 1999), hypoactivity 

(Clarke 1990; Dwoskin et al. 1999), and hypothermia (Knox et al. 1973).   However, 

tolerance to these initial effects has also been well-documented.  Specifically, rodents 

exposed to chronic nicotine administration show reduced responsiveness to analgesic 

assays (Damaj and Martin 1993), hypothermia and locomotion (Robinson et al. 1996).   

It is important to consider these two aspects in explaining variations in levels of nicotine 

dependence between age groups. 

B. Methods 

Acute Sensitivity  

Mice were given s.c. injections of nicotine and tested in four pharmacological 

tests: analgesia (two assays, tail-flick and hot-plate), locomotor activity and 

hypothermia. 

Tail-Flick Test.  Spinal antinociception was assessed by the tail-flick method of 

D’Amour and Smith (1941).  Briefly, mice were lightly restrained while a radiant heat 

source was directed onto the upper portion of the tail.  A control response (2-4 sec) was 

determined for each mouse before treatment, and test latency was determined after drug 

administration.  In order to minimize tissue damage, a maximum latency of 10 sec was 

imposed.  Antinociceptive response was calculated as percent maximum possible effect 
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(% MPE), where %MPE = [(test-control)/(10-control)] x 100.  The mice were tested 5 

min after injection of nicotine. 

Hot-Plate Test.  Supraspinal antinociception was assessed by the hot-plate method.  

Briefly, each mouse was injected s.c. with nicotine and tested 5 min after injection.  

Mice were placed on a hot plate (Thermostat Apparatus, Columbus, OH) maintained at 

55˚C.  Latency to reaction time (jumping or paw licking) was recorded.  A control 

response (8-12 sec) was determined for each mouse before treatment and test latency 

was determined after drug administration.  A maximum latency of 40 sec was imposed.  

Antinociceptive response was calculated as %MPE, where %MPE = [(test - control)/(40 

- control) x 100].  

Locomotor Activity.  Mice were placed into individual Omnitech photocell activity 

cages (Columbus, OH; 28 x 16.5 cm) 10 min after s.c. administration of nicotine.  

Interruptions of the photocell beams (two banks of eight cells each) were then recorded 

for the next 10 min.  Data are expressed as number of photocell interruptions.  

Body Temperature.  Rectal temperature was measured by a thermistor probe (inserted 

24 mm) and digital thermometer (Yellow Springs Instrument Co., Yellow Springs, OH). 

Readings were taken just before and at 30 min after the s.c. injection of nicotine.  The 

difference in rectal temperature before and after treatment was calculated for each 

mouse.  The ambient temperature of the laboratory varied from 21-24°C from day to 

day. 
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Tolerance studies 

 Mice were implanted with Alzet osmotic mini-pumps (model 2002- Alza 

Corporation, Palo Alto, CA) filled with either (-)-nicotine (48 mg/kg/day) or sterile 

physiological saline solutions.  The mini-pumps were surgically implanted s.c. under 

sterile conditions with pentobarbital anesthesia (35 mg/kg, i.p.).  An incision was made 

in the back of the animals, and a pump was inserted.  Animals were sutured and allowed 

to recover before being returned to their home cages.  Mice were infused with nicotine 

or saline for 10 days and on day 11, they were challenged with different nicotine doses 

and tested for antinociception (tail-flick and hot-plate tests) and hypothermia.  

Calculations for MPE were performed as described previously.  

Statistical Analysis 

Statistical analysis of all behavioral studies was performed with mixed-factor 

ANOVA with post-hoc Tukey’s test when appropriate.  P-values of <0.05 were 

considered to be statistically significant.    For chronic tolerance studies, ED50 (effective 

dose 50%) values were calculated with 95% confidence intervals by unweighted least-

squares linear regression as described by Tallarida and Murray (1987).  Tests for 

parallelism were calculated according to the method of Tallarida and Murray (1987).  If 

confidence limit values did not overlap, then the shift in the dose-response curve was 

considered significant.  Potency ratios were also calculated by dividing nicotine ED50 

values by saline ED50 values for each age group and pharmacological measure to 

determine whether tolerance differences were significant between age groups. 
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C. Results 

Nicotine’s pharmacological effects after acute injection 

Dose-response relationships were established for nicotine in male and female 

mice of both ages by measuring antinociception (two tests), hypothermia and 

hypomotility at the time of maximal effect (Fig. 10) and ED50s (CL) values were then 

determined for each age in different tests (Table 1).   

Males 

In the tail-flick test, early adolescent male mice displayed decreased sensitivity 

as compared to male adult mice (Fig. 10a).  ED50 values with confidence limits were 1.7 

(1.3-3.6) and 1.0 (0.6-1.2) mg/kg for adolescent and adult age groups, respectively 

(Table 1).  However, no significant differences between the two age groups were 

observed in the hot-plate, hypothermia, and hypomotility tests (Fig. 10b, 10c, 10d).  In 

addition, all acute responses to nicotine in adult and adolescent mice were blocked by 

mecamylamine at 1.0 mg/kg (data not shown).  Baseline levels in the tail-flick and hot-

plate tests were not significantly different between the two ages, respectively (PND 21: 

2.9 ± 0.2, 12.5 ± 1.3, PND 70: 2.7 ± 0.3, 13.0 ± 1.8 sec).   
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Figure 10.  Nicotine’s acute pharmacological effects in adult and adolescent male 
mice.  Mice from two age groups (PND 21 and PND 70) were injected s.c. with 
various acute doses of nicotine and tested in the following responses: (a) tail-flick 
test, (b) hot-plate test, (c) hypothermia, and (d) locomotor activity.  Each point 
represents the mean ± S.E. of 12 mice.        
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Females 

Females also showed no differences in baseline measures for tail-flick and hot-

plate tests: (PND 28: 2.5 ± 0.2, 12.2 ± 0.5, PND 70: 2.4 ± 0.2, 13.8 ± 1.0). The hot-plate 

and hypothermia measures revealed that early adolescent mice displayed increased 

sensitivity as compared to adult mice (Fig. 11b and 11c).  In the hot-plate test, ED50 

values with confidence limits were 0.4mg/kg (0.3-0.6mg/kg) and 0.9mg/kg (0.8-

1.2mg/kg) for adolescent and adult age groups respectively (Table 1).  Likewise, ED50 

values in the hypothermia measure were 0.5mg/kg (0.2-0.8mg/kg) and 1.3mg/kg (0.9-

2.0mg/kg) for adolescent and adult mice respectively.  In addition, all acute responses to 

nicotine in adult and adolescent mice were blocked by mecamylamine at 1.0 mg/kg 

(data not shown). 
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Figure 11.   Nicotine’s acute pharmacological effects in adult and adolescent 
female mice.  Mice from two age groups (PND 21 and PND 70) were injected s.c. 
with various acute doses of nicotine and tested in the following responses: (a) tail-
flick test, (b) hot-plate test, (c) hypothermia, and (d) locomotor activity.  Each 
point represents the mean ± S.E. of 12 mice.        
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PND 21 

Male 
PND 70 

Male 
PND 21 
Female 

PND 70 
Female 

Tail-flick 
1.7 (1.3-3.6)* 1 (0.6-1.2) 2.3 (0.7-4.5) 3 (1.8-5.6) 

Hot-plate 
0.5 (0.4-0.6) 0.5 (0.4-0.6) 0.4 (0.3-0.6)* 0.9 (0.8-1.2) 

Hypothermia 
0.7 (0.5-1.9) 1.1 (0.5-2.2) 0.5 (0.2-0.8)* 1.3 (0.9-2.0) 

Hypomotility 
0.5 (0.15-2) 0.3 (0.1-0.8) 0.4 (0.1-2.4) 0.4(0.1-0.6) 

 
Table 1: Summary of nicotine potency in young and adult mice after acute 
injections.  Mice from two age groups (PND 21 and PND 70) were injected s.c. with 
various doses of nicotine and tested in the following responses: tail-flick test; hot 
plate test; hypothermia; locomotor activity.  ED50 values ± confidence limits (± CL) 
were calculated from the dose-response curve of the respective treatment and 
expressed as mg/kg.  Each dose group included 12 animals.  * Indicates significant 
age differences as compared to adult (CLs do not overlap).   
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Development of tolerance to nicotine after chronic exposure 

Males 

As shown in Fig. 12, tolerance developed to nicotine’s antinociceptive and 

hypothermic effects in both adult and adolescent male mice as reflected by the 

rightward shift in the dose-response curves.  Furthermore, these shifts were significant 

as demonstrated by the significant increase (with non-overlapping confidence limits) in 

ED50 values after chronic nicotine (Table 2).  To determine if the degree of tolerance 

was significantly different between the age groups, we calculated potency ratios for 

each group (Table 4).  Adolescent male mice showed a higher degree of tolerance in the 

hot-plate test [potency ratios with confidence limits for adolescent and adults are 2.31 

(2.03-2.62) and 1.75 (1.47-1.98)] respectively; however, tolerance to the tail flick and 

body temperature developed at the same degree.   
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Figure 12.    Dose-response curve of nicotine after chronic administration in adult 
(PND 70) and adolescent (PND 21) male mice.  Animals were chronically infused 
with saline or nicotine at 48 mg/kg/day for 10 days via osmotic mini-pump.  On 
day 11 mice were challenged with nicotine and evaluated in tail flick and hot plate 
analgesia and hypothermia.  Adolescent mice are shown in graphs (a), (b), and (c) 
and adult mice are shown in graphs (d), (e), and (f).  Each point represents the 
mean ± S.E. of 12 mice. 
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Adolescent  

Saline 
Adolescent  

Nicotine 
 

Adult  
Saline 

 

Adult  
Nicotine 

 

Tail-Flick Test 
 

1.8 (1.6-1.9) 
 
3.7 (3.5-3.8) *

 
0.8 (0.7-0.9) 

 
1.8 (1.5-2.0) *

Hot-Plate Test 
 

1.5 (1.1-1.7) 
 

3.8 (3.67-4.0)*
 

0.9 (0.8-1.0) 
 

1.5 (1.3-1.7) *

Hypothermia 
 

1.1 (0.8-1.5) 
 

2.3 (1.8-3.0) *
 

0.9 (0.8-1.1) 
 

1.4 (1.3-1.6) *

 
Table 2.   ED50 values of tolerance studies after chronic administration of nicotine 
in adult and adolescent male mice. Mice were chronically infused with nicotine at 
48 mg/kg/day for 10 days via osmotic mini-pump.  On day 11 mice were challenged 
with nicotine and evaluated in three tests: tail-flick, hot-plate, and hypothermia.  
ED50 values ± Confidence limits (± CL) were calculated from the dose-response 
curve of the respective treatment and expressed as mg/kg.  Each dose group 
included 12 animals. *Indicates a significant difference as compared to the saline 
control (CLs do not overlap).   
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Females 

As shown in Fig. 13, tolerance also developed to nicotine’s antinociceptive 

effects in female mice of both ages.  These shifts were statistically significant as 

demonstrated by the increase in ED50 values after chronic nicotine (Table 3), which 

have non-overlapping confidence limits.  Table 4 summarizes the potency ratios which 

are indicative of whether tolerance levels were significantly different between the early 

adolescents and adults.  Indeed, female adolescent mice showed a lower degree of 

tolerance in the hypothermia measure [potency ratios with confidence limits for 

adolescent and adults are 1.35 (1.10-1.69) and 1.93 (1.77-2.23) respectively]. 
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Figure 13.  Dose-response curve of nicotine after chronic administration in adult 
(PND 70) and adolescent (PND 21) female mice.  Animals were chronically infused 
with saline or nicotine at 48 mg/kg/day for 10 days via osmotic mini-pump.  On 
day 11 mice were challenged with nicotine and evaluated in tail flick and hot plate 
analgesia and hypothermia.  Adolescent mice are shown in graphs (a), (b), and (c) 
and adult mice are shown in graphs (d), (e), and (f).  Each point represents the 
mean ± S.E. of 12 mice. 
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Adolescent  

Saline 
Adolescent 

Nicotine 
 

Adult 
Saline 

 

Adult 
Nicotine 

 

Tail-Flick Test 
1.9 (1.7-2.1) 3.2 (2.4-4.2)* 2.8 (2.7-3.0) 4.3 (3.9-4.8)* 

Hot-Plate Test 
1.7 (1.4-2.0) 3.0 (2.4-3.7)* 2.6 (2.4-2.8) 3.8 (3.5-4.8)* 

Hypothermia 
0.8 (0.6-1.1) 1.0 (0.9-1.2) 1.4 (1.1-1.7) 3.4 (3.1-3.7)* 

 
Table 3. ED50 values of tolerance studies in female mice. Female ICR mice were 
chronically infused with nicotine at 48 mg/kg/day for 10 days via osmotic mini-
pump. On day 11 mice were challenged with nicotine and evaluated in three tests: 
tail-flick, hot-plate, and hypothermia.  ED50 values ± Confidence limits (± CL) 
were calculated from the dose-response curve of the respective treatment and 
expressed as mg/kg.  Each dose group included 12 animals. *Indicates a significant 
difference as compared to the saline control (CLs do not overlap).   
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Adolescent  

Males 
Adult  
Males 

Adolescent  
Females 

Adult  
Females 

Tail-Flick Test 
 

1.9 (1.7-2.1) 
 

2.0 (1.7-2.3) 
 

1.5 (1.2-1.9) 
 

1.4 (1.3-1.6) 

Hot-Plate Test 
 

2.3 (2.0-2.6)*
 

1.7 (1.4-1.9) 
 

1.7 (1.3-2.2) 
 

1.4 (1.3-1.6) 

Hypothermia 
 

2.2 (1.2-3.6) 
 

1.6 (1.3-1.9) 
 

1.3 (1.1-1.6)* 
 

1.9 (1.7-2.2) 
 
Table 4. Potency ratios for tolerance studies in male and female ICR mice.  
Potency ratios with confidence intervals are given for each group. * Indicates a 
significant difference between adolescent and adult groups in a particular test 
(confidence limits do not overlap).    
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D. Discussion 

Acute sensitivity and tolerance to nicotine were examined in this chapter as 

possible underlying mechanisms of age-specific behavioral differences in components 

of nicotine dependence.  Following acute treatment with nicotine, adolescent male mice 

displayed a nicotine-induced antinociception compared to adults in the tail-flick test.  

This finding suggests that, in male adolescents, predisposition to maintain use of 

nicotine might be due to the lessening of aversive effects due to decreased sensitivity to 

the drug.  However, since there was only a decrease in the tail-flick test while the other 

measures showed no changes between the two age groups, it does not appear that acute 

sensitivity to nicotine is a major contributing factor.   

The data from our tolerance study show that adolescent male mice produce a 

greater degree of tolerance to nicotine-induced antinociception as compared to adult 

mice in the hot plate test.  The tolerance level is an important factor in evaluating 

nicotine dependence.  The higher tolerance seen in male adolescents suggests that this 

age group would have to smoke more to achieve the same level of effect as an adult 

leading to a greater intake of nicotine in adolescence and an increase in the likelihood of 

becoming dependent.  However, again only one measure of tolerance was significantly 

different between the two age groups in males suggesting a minor role for this 

mechanism. 

Similarly in females, initial sensitivity to acute nicotine and tolerance to nicotine 

did not appear to play a large role in the differences in nicotine dependence between 

adults and adolescents.  Adolescent female mice displayed an increased sensitivity to 
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acute nicotine treatment as compared to adults in the analgesic and hypothermia tests.  

This factor may contribute to the difficulty in quitting, but probably does not contribute 

greatly since not all measures were indicative of increased sensitivity.  The data from 

our tolerance study show that female adolescent mice produce a lower degree of 

tolerance to nicotine-induced hypothermia as compared to adult mice, but no 

differences were observed in antinociceptive measures.  Since we only saw differences 

in potency in one measure, it is also unlikely that this factor is a substantial contributor.   

 Taken together, these data suggest that differences in acute sensitivity and 

tolerance to nicotine only play a minor role in age-related differences in nicotine 

dependence.  In addition to behavioral mechanisms, it is also important to consider 

variations in molecular and cellular mechanisms in order to understand drug 

dependence.  In Chapter 5, we will consider mechanisms that examine receptor number 

and function, as well as differences in downstream signaling that may contribute to 

elevated levels of nicotine dependence in adolescents.   Although differences in female 

mice were noted throughout in vivo studies, we have chosen to investigate the male sex 

for the remainder of the studies.  We felt that it was beyond the scope of the project to 

address both sexes and have focused our attention on fully characterizing the male sex. 
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AN EXAMINATION OF THE PHASE OF ADOLESCENT NICOTINE 
EXPOSURE ON NICOTINE REWARD AND WITHDRAWAL IN MALES 

 
 

A. Introduction 

Chapters 2 and 3 demonstrate that early adolescent mice show different levels of 

nicotine dependence as compared to adult mice.  However, it is important to know 

whether this specific phase of adolescence is unique or if age-related differences are 

also found during subsequent adolescent periods.  Indeed, early adolescence has been 

implicated as the most critical period of adolescent development.  Belluzzi et al. (2004) 

have shown that rats exposed to nicotine during early adolescence (P28) displayed 

conditioned place preference, while older adolescents and adults fail to do so.  

Moreover, Vastola et al. (2002) also found that only rats conditioned during early 

adolescence showed preference to nicotine.  Behavioral studies in nicotine withdrawal 

have also focused on early adolescence (O’Dell et al. 2006; Shram et al. 2006) and have 

reached similar conclusions regarding age-specific differences.  However, few studies 

have investigated other phases of adolescence to examine their susceptibility to 

dependence behaviors.   One study reported that early adolescent mice demonstrated a 

preference for oral nicotine, while middle and late adolescents showed no preference 

(Adriani et al. 2002) suggesting the uniqueness of this phase.  The aim of this chapter 

was to examine all three phases of adolescence in the CPP model and to examine the 

late adolescent phase in regards to signs of nicotine withdrawal.  As a reminder, these 
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studies were only conducted in male subjects as studying these effects in females is 

beyond the scope of this project. 

B. Methods 

Nicotine-induced conditioned place preference studies 

 The same general procedure as previously described in Chapter 2 was used for 

this experiment.  In addition to another set of early adolescent (PND 21) and adult 

(PND 70) mice, middle (PND 35) and late (PND 49) adolescent mice were also tested 

for nicotine-induced rewarding effects.   

Precipitated nicotine withdrawal studies 

 Withdrawal testing was performed exactly as previously described in Chapter 2 

using the osmotic mini-pump model.  Mice were PND 49 upon mini-pump implantation 

and were tested 8 days later for mecamylamine-induced withdrawal signs. 

Statistical Analysis 

Statistical analysis of all behavioral studies was performed with mixed-factor 

ANOVA with post-hoc Tukey’s test when appropriate.  P-values of <0.05 were 

considered to be statistically significant.     

C. Results 

Effect of Adolescent Phase on Nicotine-Induced Conditioned Place Preference 

Nicotine-induced CPP in all stages of adolescence is shown in Figure 14.  

Consistent with previous results in the adult, neither middle nor late adolescent mice 

displayed an enhanced CPP in response to low doses of nicotine.  A significant 

preference was only established at a dose of 0.5 mg/kg for these three age groups.  In 
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contrast, early adolescent mice demonstrated a clear preference for both 0.05 and 0.1 

mg/kg nicotine which are inactive doses in older animals; thus suggesting an increased 

sensitivity to the rewarding effects of nicotine during this stage of development.  These 

data support the hypothesis that early adolescence is the most critical stage for nicotine-

induced rewarding effects. 

 

 

 

 

 

  



www.manaraa.com

  76 

-50

0

50

100

150

Saline 0.05 0.1 0.5 0.7 1

Nicotine-Induced Conditioned
Place Preference

Adult
Early Adolescent
Middle Adolescent
Late Adolescent

Nicotine (m g/kg)

*

* *
* *

*

Figure 14. Age-dependent nicotine-induced conditioned place preference in male 
mice.  Adult (PND 70), late adolescent (PND 49), middle adolescent (PND 35) and 
early adolescent (PND 21) were conditioned s.c. with various doses of either saline 
or nicotine using the CPP paradigm.  Positive scores indicate a preference for 
nicotine while negative scores are indicative of aversion to the drug.  Scores at or 
near zero indicate neither preference nor aversion. Each point represents the mean 
± SEM of 8-9 mice.  *p<0.05 from saline group. 
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Effect of Adolescent Phase on Nicotine Withdrawal 

As with the conditioned place preference model, we also investigated how the 

stage of adolescence affected levels of nicotine withdrawal.  We examined this question 

by precipitating nicotine withdrawal in late adolescent male mice after chronic 

administration of the drug.  In order to easily compare adult, early adolescent and late 

adolescent data, we have graphed our results together as seen in Figure 15.  Control 

groups were included in this experiment; however, no significant differences were noted 

so data is only shown in table format (Table 5) in order to simplify the graphs.  

As previously stated, early adolescent mice displayed lower withdrawal signs as 

compared with adult mice.  Particularly, somatic signs and hyperactivity measures were 

found to be significantly attenuated (Fig. 15a, 15d).  Furthermore, there was no 

evidence of withdrawal behavior in the elevated plus maze (Fig. 15b) or in hyperalgesia 

(Fig. 15c) testing for early adolescent mice.  On the other hand, late adolescent mice 

displayed withdrawal behavior in all four measures and there were no significant 

differences noted between adult and late adolescent withdrawal intensity.  This suggests 

that early adolescents, but not late adolescents, have a decreased vulnerability to 

nicotine’s aversive effects. 
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 Adult 
Sal MP/Sal Inj 

Adult 
Nic MP/Sal Inj 

Early Adolescent 
Sal MP/Sal Inj 

Early Adolescent 
Nic MP/Sal Inj 

Late Adolescent 
Sal MP/Sal Inj 

Late Adolescent 
Nic MP/Sal Inj 

SS 4 ± 1 3 ± 1 3 ± 0 2 ± 0  2 ± 2 3 ± 1 

EPM 28.5 ± 1.4 26.8 ± 3.0 33.6 ± 2.5 29.9 ± 1.8 30.7 ± 3.3 32.6 ± 2.0 

HP 9 ± 1.1 10.6 ± 0.8  8.5 ± 0.3 7.5 ± 0.3 8.3 ± 0.9 8.6 ± 0.7  

LA 1064 ± 98 968 ± 58 988 ± 65 1002 ± 42 1102 ± 54 1036 ± 39 

 
Table 5: Summary of control data for precipitated nicotine withdrawal 
experiments in adult (PND 70), early adolescent (PND 21), and late adolescent 
(PND 49) male mice.  Mice were chronically infused with nicotine at 48 mg/kg/day 
or saline for 7 days.  On day 8, mice were injected with 2.0 mg/kg of 
mecamylamine or saline s.c. to precipitate withdrawal and evaluated in four tests: 
somatic signs, elevated plus maze, hot plate analgesic test, and locomotor activity.  
MP=mini-pump; Inj=injection 
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Figure 15.  Mecamylamine-precipitated withdrawal in adult (PND 70), early 
adolescent (PND 21), and late adolescent (PND 49) male mice.  Mice were 
chronically infused with nicotine at 48 mg/kg/day or saline for 7 days.  On day 8, 
mice were injected with 2.0 mg/kg of mecamylamine or saline s.c. to precipitate 
withdrawal and evaluated in four tests: (a) somatic signs, (b) elevated plus maze, 
(c) hot plate analgesic test, and (d) locomotor activity.  (n=12/group)   
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D. Discussion 

 Early adolescence has been identified as a critical period of both physical and 

neuronal development.  Specifically, a vast amount of pruning and synapse loss has 

been reported.  It has been estimated that as many of half of the average number of 

synapses are lost during adolescence (Rakic et al. 1994).   These changes may 

contribute to differences in behavioral responses over certain periods of development.  

Only a limited number of studies have investigated nicotine’s behavioral effects 

throughout all phases of adolescence.  It is unclear if each phase is important in the 

development of drug dependence or if this susceptibility is limited to early adolescence.  

Data from our studies demonstrate that early adolescence is unique in both reward and 

withdrawal models.   

 Only early adolescent mice demonstrated a significant preference for low doses 

(0.05 and 0.1 mg/kg) of nicotine in the CPP model.  This indicates that minimal 

exposure to nicotine may be able to elicit rewarding effects at this age due to enhanced 

sensitivity.  In contrast, older adolescents and adults only displayed preference at a 

higher dose of nicotine: 0.5 mg/kg.  Our data are in agreement with that of a previous 

study which found that only early adolescent mice displayed preference for oral nicotine 

(Adriani et al. 2002).  In the withdrawal model, early adolescent mice demonstrated a 

significant attenuation of both physical and affective signs of withdrawal as compared 

to adults.  On the other hand, late adolescents showed no differences from adults in any 

of the four withdrawal measures indicating that the intensity of withdrawal is similar in 

these two age groups.  
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Taken together, these data support the hypothesis that, in males, early 

adolescence represents a unique phase of development in which rewarding effects are 

enhanced and withdrawal signs are attenuated.  This implies that humans may be more 

vulnerable to nicotine dependence if exposure begins at an early age.  These findings 

stress the critical nature of early prevention messages and intervention strategies that 

combat teenage smoking.   Indeed, studies have found that the commencement of 

smoking at a young age is thought to increase addiction, decrease the probability of 

successful cessation (Colby et al. 2000; Kandel and Chen 2000), and correlate with a 

higher number of cigarettes smoked per day (Taoli and Wynder 1991).   It is important 

that we increase our understanding of the mechanisms behind this enhanced 

vulnerability so that smoking cessation therapies and treatments which are age 

appropriate can be properly developed.  For these reasons, molecular studies will 

continue to focus on the early adolescent phase due to its apparent significance in the 

initiation of smoking. 
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MOLECULAR MECHANISMS INVOLVED IN NICOTINE DEPENDENCE 

 

A. Introduction 

Early adolescent and adult mice display different responses in models of 

nicotine reward and withdrawal.  It is likely that functional properties, distribution, and 

number of nAChRs could contribute to these differences.  Additionally, alterations in 

receptor number and function may lead to changes in downstream signaling which will 

affect pharmacological responses to nicotine.  The goal of these experiments was to 

investigate these possibilities in order to further our understanding of early adolescent 

vulnerability to nicotine dependence.    

Recently, it was reported that the quantity and distribution of nAChRs changes 

as development progresses.  Specifically, Azam et al. (2007) found that α5, α6, and α7 

mRNAs reach peak levels in early adolescence then decrease to lower adult levels.  In 

addition, the authors reported regional differences in expression of α5, α6, and β3 

mRNAs with elevated levels in the substantia nigra as compared to the ventral 

tegmental area.   Furthermore, adolescent nicotine exposure appears to have important 

molecular consequences.  One study examined the effects of acute nicotine exposure on 

several early response genes which are thought to be involved in synaptic plasticity and 

addiction.  The study found that rats which were exposed to nicotine during adolescence 

showed an induction of arc mRNA in the PFC.  Other genes, such as c-fos, were also 

upregulated by nicotine independent of age (Schochet et al. 2005).   Finally, research by 

Levin et al. (2007) correlated an increase in nicotine i.v. self-administration in 

adolescent rats with significantly greater high affinity nicotinic receptor (α4β2) binding 

in the midbrain and the striatum as compared to adults.  Taken together, these data 

suggest that adolescent nicotine exposure has important consequences on brain 
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maturation and development.  Furthermore, nicotine may be causing alterations in 

receptor subtypes and function which will have critical downstream effects that may 

lead to increases in addiction vulnerability.  Although some studies have examined the 

effect of nicotine on downstream signaling in adolescent rodents, only limited studies 

have directly compared age-related differences in distribution and expression of 

nAChRs before and after nicotine exposure.  

Our approach in investigating these mechanisms involved beginning at the 

major target of nicotine, the nicotinic acetylcholine receptor.  Rubidium efflux is a well-

known and well-established model which is used to assess nAChR function.  Many of 

the behavioral responses which have been examined in these studies are mediated by 

the α4β2* subtype (the major subtype measured in this assay) which is why we began 

with this approach.  In addition to rubidium efflux, we performed nAChR binding 

studies to investigate basal differences in receptor levels between adults and early 

adolescents.  Although this method is not a direct measure of receptor function, it has an 

advantage over assessing mRNA levels in that it directly measures protein levels.  

Finally, our dopamine release assay was performed in order to investigate particularly 

important effects downstream of the receptor activation.  Dopamine is known to be an 

important neurotransmitter which is involved in the mesolimbic reward pathway that 

contributes to the addictive nature of nicotine.  Together these studies aim to enhance 

the understanding of the molecular and cellular pathways of nicotine dependence. 

B. Methods 

Rubidium Efflux Studies 

Unless otherwise noted, all reagents were purchased from Sigma Chemical Co., 

St. Louis, MO.  Mice were rapidly decapitated and four brain regions were dissected for 

use in the assay (striatum, frontal cortex, hippocampus, and thalamus).  Brain regions 
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were pooled from several mice if needed.  In this experiment, we used striatum from 5 

mice, cortex from 2 mice, hippocampus from 3 mice, and thalamus from 1 mouse. 

Synaptosomes were prepared according to Marks et al. (1993a, 1993b).  Briefly, 

synaptosomes were prepared by hand homogenizing tissue in cold 0.32M sucrose 

(1ml/g tissue).  After centrifugation, pellets were resuspended in cold load buffer 

(140mM NaCl, 1.5mM KCl, 2mM CaCl2, 1mM MgSO4, 25mM HEPES hemisodium 

salt, 20mM glucose, pH 7.4).  A 25-µl aliquot of the synaptosome suspension was 

incubated for 40 min with 10µl load buffer containing approximately 4µCi 86RbCl 

(Perkin Elmer Life Sciences, Boston, MA).  After the synaptosomes were filtered onto 

glass fiber filters under gentle vacuum, the filters were rinsed with 0.5ml of load buffer 

and placed on the perfusion apparatus for washing with perfusion buffer (135mM NaCl, 

5mM CsCl, 1mM MgSO4, 2mM CaCl2, 1.5mM KCl, 1g/l bovine serum albumin, 50nM 

tetrodotoxin, 25mM HEPES hemisodium salt, pH 7.4) for six min.  The filter containing 

synaptosomes was subsequently perfused continuously.  Filters were stimulated for one 

minute with various concentrations of nicotine prepared in perfusion buffer followed by 

a three-minute wash with perfusion buffer alone.  Twelve-second fractions were 

collected in 12 x 75-mm test tubes beginning six min into the perfusion.  Samples were 

counted for one minute each in a Wallac Wizard 3'' 1480 Automatic Gamma Counter; 

(PerkinElmer, Shelton, CT).  The magnitude of 86Rb+ efflux response was calculated 

based on the increase in counts above baseline after stimulation of the tissue with 

nicotine.  Data were calculated as fractional release (cpm/total cpm loaded on filter) for 

each fraction collected.  The baseline was calculated for each mouse by fitting to an 

exponential equation the fractional release in fractions immediately preceding and 

following the peak.  The area under the curve was calculated for each mouse using this 

mathematically derived baseline and the fractional release values in the peak.   
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Nicotinic Receptor Binding

Materials   

(±)-[3H]Epibatidine (48 Ci/mmol) and L-[3H]nicotine (78 Ci/mmol), were 

purchased from Du Pont NEN (Boston, MA). alpha -[125I]Bungarotoxin (Initial 

specific activity = 220 Ci/mmol) plastic tritium standards and Hyperfilm-3H were 

purchased from Amersham (Mount Prospect, IL). NaCl, KCl, MgSO4, CaCl2, gelatin, 

chromium aluminum sulfate, cytisine, acetylcholine and diisopropyfluorophosphate 

were obtained from Sigma Chemical Co. (St. Louis, MO). Methylcarbachol chloride, 

(+)-epibatidine tartrate, and (-)-epibatidine tartrate were obtained from RBI (South 

Natick, MA). Nicotine bitartrate was a product of BDH Chemicals (Poole, England). 

Glass fiber filters Type A/E were obtained from Gelman Sciences (Ann Arbor, MI) and 

Type GB from MFS (Dublin, CA). Budget Solve scintillation fluid was obtained from 

RPI (Arlington Heights, IL). 

Tissue preparation  

Each mouse was killed by cervical dislocation; the brain was removed from the 

skull and placed on an ice-cold platform. The following 4 brain regions were dissected: 

nucleus accumbens (NAc), ventral tegmental area (VTA), hippocampus (HIP), and 

prefrontal cortex (PFC). Samples were homogenized in ice-cold hypotonic buffer 

(NaCl, 14.4 mM; KCl, 0.2 mM; CaCl2, 0.2 mM; MgSO4, 0.1 mM, HEPES, 2.0 mM; 

pH = 7.5) using a glass-Teflon tissue grinder. The particulate fraction was obtained by 

centrifugation at 20,000 × g for 20 min in a Sorvall RC-2B centrifuge. The pellet was 

resuspended in fresh homogenization buffer, incubated at 37°C for 10 min, and 

harvested by centrifugation. Each sample was washed twice more by resuspension and 

centrifugation and stored as a pellet under homogenization buffer at -70°C until use. 
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[3H]nicotine binding  

The binding of [3H]nicotine was measured using a modification of the method of 

Marks et al. (1986). Samples (50-200 µg, depending on brain region) were incubated in 

96-well polystyrene plates with 20 nM [3H]nicotine at 22°C for 30 min in 100 µl of 

binding buffer (NaCl, 144 mM; KCl, 1.5 mM, CaCl2, 2 mM; MgSO4, 1 mM; HEPES, 

20 mM; pH = 7.5). The binding reaction was terminated by filtration of the samples 

onto glass fiber filters (MFS GB top, Gelman A/E bottom) that had been soaked in 

binding buffer containing 0.5% polyethylenimine using an Inotech Cell Harvester 

(Inotech, East Lansing, MI). Samples were subsequently washed six times with ice-cold 

binding buffer. Nonspecific binding was determined by including 10 µM L-nicotine in 

the assay. 

alpha -[125I]bungarotoxin binding 

The binding of alpha -[125I]bungarotoxin was measured using a modification of 

the method of Marks et al. (1986). The binding reaction was similar to that used for 

[3H]nicotine with the following changes: incubation time was 5 hr, samples contained 1 

nM alpha -[125I]bungarotoxin instead of [3H]nicotine and the binding buffer also 

included .025% bovine serum albumin. Blanks were determined by including 1 mM L-

nicotine in the assay. 

[3H]epibatidine binding 

The binding of [3H]epibatidine was measured in a method analogous to that of 

[3H]nicotine with the following changes: incubations were in 1-ml polypropylene tubes 

in a 96-well format, incubation volume was 500 µl, and [3H]epibatidine rather than 

[3H]nicotine was used. Nonspecific binding was determined by including 100 µM L-

nicotine in the assay. Nonspecific binding at all concentrations of [3H]epibatidine was 

less than twice background (40 dpm). The following experiments were conducted: 
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construction of curves for inhibition of [3H]epibatidine binding in olfactory bulbs by 

cytisine, nicotine, acetylcholine (using tissue treated with 10 µM 

diisopropylflourophosphate during the tissue preparation), methylcarbachol, (+)-

epibatidine and (-)-epibatidine (preliminary experiments indicated that inhibition in 

olfactory bulbs deviated markedly from that expected for a single site); construction of 

curves for inhibition of [3H]epibatidine binding in 4 brain regions by cytisine; and 

measurement of the concentration dependence of [3H]epibatidine binding in 4 brain 

regions. The concentration of [3H]epibatidine used for inhibition curves was about 400 

pM (approximately 20 x Kd). This concentration was chosen to maintain ligand binding 

to the tissue to less than 5% of the total. An incubation time of 60 min was used for 

these experiments (equilibrium was reached in 20-30 min). For saturation curves, eight 

[3H]epibatidine concentrations between 6 and 800 pM were used. Incubation time for 

these experiments was 2 hr (equilibrium was reached by 60 min for all concentrations). 

In these experiments a significant fraction of the [3H]epibatidine was bound to the 

tissue, especially at lower ligand concentrations. Free [3H]epibatidine concentration was 

estimated by correcting for the amount of ligand bound to the tissue at each 

concentration for every brain region. 

Protein  

Protein was measured using the method of Lowry et al. (1951) with bovine 

serum albumin as the standard. 

Calculations   

Results for saturation binding experiments were calculated using the Hill 

equation: B = Bmax*Ln/(Ln + Kd
n), where B is the binding at free ligand concentration, L, 

Bmax
 is the maximum number of binding sites, Kd is the equilibrium dissociation 

constant, and n is the Hill coefficient. Values of Bmax, Kd and n were calculated using 
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the nonlinear least squares algorithm in Sigma Plot 5 (Jandel Scientific, San Rafael, 

CA).  Results for inhibition of epibatidine binding were calculated using the formulas 

for either one or two binding sites: B = B0/(1+(I/IC50)) or B = B1/(1+(I/IC50-

1)) + B2/(1+(I/IC50-2)), respectively, where B is ligand bound at inhibitor concentration, 

I, B0 is the binding in the absence of inhibitor, and B1 and B2 are the binding to two sites 

sensitive to inhibition with IC50-1 and IC50-2. Assuming competitive inhibition: IC50 = Ki 

x (1 + L/Kd).  Results were also calculated using the Hill equation. 

Dopamine Release Assay 

Materials 

7,8-[3H]Dopamine was obtained from PerkinElmer Life and Analytical Sciences 

(Boston, MA) (specific activity, 40–60 Ci/mmol). 

Membrane Preparation 

Adult and adolescent male mice were sacrificed by cervical dislocation. The 

brain was removed from the skull and was immediately placed on ice for dissection.  

Striatum was isolated and removed from the brain. Tissue was homogenized (16-20 

strokes by hand) in 0.5 ml of 0.32 M sucrose buffered with 5 mM HEPES, pH 7.5. 

Synaptosomal pellets were then prepared by centrifugation at 1000g for 10 min, 

followed by centrifugation of the resulting supernatant at 12,000g for 20 min. The 

pellets were resuspended in perfusion buffer (128 mM NaCl, 2.4 mM KCl, 3.2 mM 

CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 25 mM HEPES, pH 7.5, 10 mM glucose, 1 

mM ascorbic acid, and 0.01mM pargyline. The perfusion procedure has been described 

previously (Grady et al., 1997). Briefly, synaptosomes were incubated at 37°C in 

perfusion buffer for 10 min before addition of 100 nM [3H]dopamine (1 µCi for every 

0.2 ml of synaptosomes). Aliquots of synaptosomes (80 µl) were distributed onto filters 

and perfused at 0.6 ml/min for 10 min before fractions were collected. [3H]dopamine 
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were added at the same time during the last 5 min of the uptake procedure. Atropine (1 

µM) was added to the perfusion buffer to inhibit muscarinic receptors.  Various 

concentrations of nicotine were used to stimulate dopamine release.  Fractions were 

collected every 30s, and radioactivity was determined by scintillation counting (1600TR 

liquid scintillation spectrometer; Packard Instrument Co.) after addition of EconoSafe 

(Sigma/RBI, Mt. Prospect, IL). 

Statistical Analysis 
Nicotine stimulated 86Rb+ efflux was analyzed with a two-way analysis of 

variance (ANOVA) and a one-way ANOVA as a function of age.  These were followed 

by Tukey post hoc tests.   EC50 (effective concentration 50%) were calculated by 

unweighted least-squares linear regression as described by Tallarida and Murray (1987).  

A P value of <0.05 was considered statistically significant.  nAChR binding studies 

were analyzed using two-way ANOVAs with appropriate post-hoc tests when 

necessary.  EC50s were calculated for dopamine release assay curves.  Individual 

concentrations were also analyzed with two-way ANOVAs with Tukey post-hoc tests 

when appropriate.   

C. Results 

Rubidium Efflux Studies 

Dose-response curves for nicotine-stimulated synaptosomes were generated for 

both adults and adolescents in four brain regions: striatum, cortex, hippocampus, and 

thalamus (Fig. 16; data represented by a Michaelis-Menten curve fit where 

y=m1*x/(m2+x)).  Synaptosomes were responsive to nicotine stimulation in a dose-

dependent manner until approximately 100µM of nicotine at which point the response 
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reached its peak.  Adolescent mice displayed greater nAChR functionality with larger 

differences at lower concentrations of nicotine.  The difference is also evident by the 

shift to the left of nicotine dose-response curves in adolescent compared to that of adult 

mice (Fig.16).  Estimated EC50 values for both age groups are as follows in adolescents: 

striatum=0.53µM; cortex=0.79µM; hippocampus=0.96µM; and thalamus=0.53µM.  

EC50 values for adults were: striatum=1.61µM; cortex=10.77µM; 

hippocampus=3.13µM; and thalamus=3.93µM.  We have coupled this analysis with the 

total AUC which is a more comprehensive measure of nAChR functionality.  As shown 

in Fig. 17, adolescent mice displayed significantly higher nicotinic receptor 

functionality than adults in all four brain regions tested.  
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Figure 16.  Dose response curves from the striatum, cortex, hippocampus, and 
thalamus regions of adult (PND 75) and adolescent (PND 28) male mice.  
Synaptosomes from brain tissue were stimulated with various doses of nicotine for 
one minute to generate dose-response curves.  Area under the curve is shown on 
the y-axis and nicotine dose is shown on the x-axis.  Data are represented by a 
Michaelis-Menten curve fit where y=m1*x/(m2+x).  In the striatum, R values =0.97 
(adolescents) and 0.87 (adults).  In the cortex, R values = 0.99 (adolescents) and 
0.81 (adults).  Adolescent mice (dashed line) displayed higher nAChR functionality 
as compared to adult mice (solid line).   Results are expressed as mean AUC ± S.E. 
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Figure 17.    Total area under the curve for all doses of nicotine in the rubidium 
efflux assay in four brain regions.  Results are expressed as mean AUC  ± S.E.   
* p<0.05 from adult mice.   
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Nicotinic Receptor Binding Studies 

 Results from the nicotinic receptor binding studies are shown in Figure 18.  

Binding techniques quantified total nAChRs (a), cytisine sensitive α4β2* nAChRs (b), 

α-conotoxin-MII sensitive α6-containing nAChRs (c), and α-bungarotoxin sensitive α7 

nAChRs (d) using various pharmacological tools.  In the α4β2* and the total nAChR 

binding studies, a trend for increased nAChR binding in the adolescent mice was 

observed; however no significant differences were found in total nAChR binding or for 

a particular nAChR subtype. 
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Figure 18.  Nicotinic acetylcholine receptor binding assays were performed on 
adult (PND 75) and adolescent (PND 28) ICR mice.  Various pharmacological tools 
were used to assess the following nAChR subtypes: (a) total nAChR binding; (b) 
cytisine-sensitive binding (α4β2); (c) alpha-conotoxin (α6); and (d) alpha-
bungarotoxin (α7).  Results are expressed as receptor density normalized to 
protein.  Bars represent the mean ± S.E. of 6-8 mice. 
 
 

 

 

 

  



www.manaraa.com

  95 

Dopamine Release Assay 

 Figure 19 shows the results from the dopamine release assay which examined 

levels of dopamine release from the striatum in adult and adolescent mice.  Dose-

response curves were calculated for both age groups over a range of nicotine doses.  

The graph shows that there was a trend for an increased dopamine release from 

adolescent synaptosomes.  However, this increase was not significant when all data was 

compiled together as total area under the curve. 
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Figure 19. Dopamine release from striatal synaptosomes in adult (PND 75) and 
adolescent (PND 28) mice.  Striatal synaptosomes were stimulated with various 
concentrations of nicotine to generate a dose-response curve.  Each point 
represents the mean ± S.E. of 6-8 mice.  Total area under the curve is also 
presented in the graph to the right with adults represented by the solid black bar 
and adolescents represented by the hatched bar. * p<.05 from same concentration 
in adult. 
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D. Discussion 

 The data in this chapter show that there is a clear and significant increase in 

nAChR functional response to nicotine in adolescent mice as compared to adults 

(Figures 16 and 17).  This increase is consistent in four important brain regions 

(striatum, cortex, hippocampus, and thalamus) which contribute to nicotine addiction 

and dependence.  Our data also agree with recent findings in the rat (Britton et al. 2007) 

where nicotine-stimulated rubidium efflux peaked during adolescence (~PND 35).  This 

increased functionality of adolescent receptors could be playing a role in the behavioral 

observations seen in the conditioned place preference and withdrawal models.  Our 

results support the observation of an enhanced preference in the CPP model in that 

increased nAChR function would translate into increased responsiveness to the 

rewarding effects of nicotine.  In contrast, correlations to the results from our 

withdrawal studies are not as clear.  There are differences between the two studies 

which may account for differences in the results.  Rubidium efflux studies were 

conducted in naïve mice while withdrawal studies were conducted after chronic 

exposure to nicotine.  It is possible that nAChRs may be regulated differently after 

chronic drug treatment which would contribute to inconsistencies. 

These results could imply several other possibilities for age-related differences 

in behavioral models.  It is logical to consider that increased functional response may be 

due an increase in basal levels of nAChRs in adolescent as compared to adult animals.  

For this reason, we investigated nAChR binding in the brain in these two ages.  We 

found no significant differences in receptor binding in our study.  Furthermore, specific 
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receptor subtypes were also evaluated and still no differences were observed (Figure 

18).  In contrast to our findings, Azam et al. (2007) reported that levels of α5, α6, and 

α7 mRNA were higher during the adolescent period.   However, mRNA data must be 

interpreted with caution in that differences in mRNA do not necessarily reflect a similar 

change in receptor protein expression.  Another possibility is that differences in receptor 

stoichiometry (i.e. (α4)2(β2)3 vs. α4α5β2, etc) are not detectable by binding methods. 

Since neuronal pathways are still developing in young animals, it is also 

possible that the adaptations in the brain during development cause the levels of 

dependence to change over time as well.   For example, the dopaminergic system is 

under great development during adolescence and may account for behavioral 

observations.  However, results from our dopamine release studies did not find 

significant differences between the two age groups in the mouse (Figure 19).  On the 

other hand, Azam et al. (2007) reported that nicotine-stimulated dopamine release was 

significantly higher during the early adolescent period in the male rat.   Furthermore, 

previous work has demonstrated that dopamine release is attenuated in the adult rat 

during withdrawal (DiChiara 2000; Hildebrand et al. 1998).   Therefore, it is possible 

that adolescents do not experience this same decrease in dopamine thus lowering 

withdrawal symptoms and aversive effects.   The study by Azam et al. (2007) was 

different from our study in that they were comparing nicotine-evoked dopamine release 

in animals at even younger ages (PND 7 and PND 14); whereas our study used PND 24-

28 mice.  In addition, no comparisons to adult rodents are given in this report.   As 

previously mentioned, our assays which used a crude preparation of synaptosomes may 
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not ensure complete precision.  For example, techniques such as microdialysis may be 

more accurate in that it preserves the neuronal connections of an intact neuron.  It is 

possible that more sensitive assays may be required to denote differences between the 

age groups. 

An alternative explanation for the behavioral responses which we have observed 

may be linked to other receptor types which are known to be involved in nicotine 

dependence.  For example, glutamatergic receptors have been shown to play a role in 

nicotinic effects as well.   Research has shown that administration of mGlu2/3 agonists 

decreased nicotine, but not food self-administration in rats (Liechti et al. 2007).  

Another study showed that nicotine exposure during adolescence dose-dependently 

down-regulated GluR2/3 subunits in the striatum and hippocampus while nicotine 

exposure in adults did not have this effect (Adriani et al. 2004).  This same study also 

showed changes in NMDA NR2A/B subunits regardless of the time of exposure 

suggesting the involvement of NMDA receptors in certain aspects of nicotine 

dependence.  These findings suggest that other receptors may also be involved and 

should be further examined.   
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“BEHAVIORAL PLASTICITY”: THE EFFECTS OF ADOLESCENT 
NICOTINE EXPOSURE ON NICOTINE DEPENDENCE 

 
A. Introduction 

Overall, studies conducted to date suggest that the rewarding and reinforcing 

effects of nicotine are enhanced in adolescent versus adult rodents and that early 

adolescence may represent a period of heightened vulnerability.   Data discussed in 

Chapter 2 indicate that in male adolescent mice, there is an increase in sensitivity to 

nicotine reward as well as attenuation in withdrawal signs as compared to adults.  While 

it is clear that there are substantial behavioral age differences in nicotine dependence, it 

is still uncertain what type of long-lasting effects adolescent nicotine exposure has on 

lifetime nicotine dependence.  Human studies have sought to examine this question 

since statistics support the concept that those who begin smoking at an early age are 

more likely to continue this pattern of behavior.  Indeed, over 90% of adult smokers 

report their first use of tobacco prior to age 18 (Chassin et al. 1990).   The 

commencement of smoking at a young age is thought to increase addiction, decrease the 

probability of successful cessation (Colby et al. 2000; Kandel and Chen 2000), and 

correlate with a higher number of cigarettes smoked per day (Taoli and Wynder 1991).  

Since more than 6,000 teenagers begin smoking every day (American Lung Association 

Statistics 2002) this is a critical problem which needs to be investigated.  Human studies 

are limited in that they are unable to discern biological factors since many social, 

psychological, and emotional factors may also play an important role.   For this reason, 

animal models are useful in that they have a biological emphasis.   
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The goal of this study was to conduct a thorough investigation of the effects of 

adolescent nicotine exposure on both nicotine reward and withdrawal in adulthood.  

Specifically, dose and duration of exposure were examined to determine how these two 

factors contribute to the induction of persistent behavioral changes.  In addition to 

nicotine reward and withdrawal, locomotor function was measured following adolescent 

nicotine exposure.  Finally, we investigated the correlation of adolescent nicotine 

exposure with measures of nAChR function using the rubidium efflux assay in order to 

assess whether early exposure had long-lasting effects at the receptor level.  We 

hypothesized that chronic exposure to nicotine during early adolescence would have 

long-lasting effects on behavior in adulthood. 

B. Methods 

Drugs

(-)-Nicotine bitartrate and mecamylamine hydrochloride were purchased from 

Sigma Chemical Company (Milwaukee, WI). All doses are expressed as free base.   

Conditioned Place Preference Studies 

Mice received nicotine for various durations during early adolescence (PND 21-

31), late adolescence (PND 49-59) or adulthood (PND 70-80).  Table 6 fully describes 

the various experimental groups and the time course of this experiment.  Briefly, there 

were three durations of nicotine exposure: acute, intermittent, and frequent.  Two doses 

of nicotine (0.1 and 0.5 mg/kg) or saline were administered s.c. twice daily with 

injections being approximately 6 hours apart (9am and 3pm).  Once adolescent mice 

had reached adulthood (PND 70), mice were evaluated for nicotine reward using 
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conditioned place preference. Mice which received their first injections in adulthood 

(PND 70) were evaluated seven weeks later (PND 120) in order to mimic the amount of 

time between early adolescence and adulthood.   

The precise protocol for conditioned place preference was the same as 

previously described in Chapter 2.  Briefly, mice have a pre-conditioning day which is a 

drug free assessment of baseline preference in a three compartment chamber.  This is 

followed by three days of conditioning to either nicotine.  Only one conditioning dose 

of nicotine was used in this model (nicotine 0.5 mg/kg).  This dose was chosen because 

it was found to elicit preference for early adolescents and adults as demonstrated in 

Figure 2 of Chapter 2.  The final day of the paradigm is the same as day 1 and assesses 

preference after the conditioning period.  Preference scores are expressed as time spent 

on drug-paired side minus time spent on saline-paired side.  A positive number 

indicated a preference for the drug-paired side, while a negative number indicated an 

aversion to the drug-paired side.  A number at or near zero indicated no preference for 

either side. 
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Early adolescence-Acute One day; PND 28; 2 total injections 

Early adolescence-Intermittent Every 3 days; PND 22, 25, 28, 31; 8 total injections 

Early adolescence-Frequent Every day; PND 22-28; 14 total injections 

Late adolescence-Frequent Every day; PND 50-56; 14 total injections 

Adulthood-Frequent Every day; PND 71-77; 14 total injections 

Table 6. Time-course for conditioned place preference studies.   
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Mecamylamine-Precipitated Withdrawal Studies 

The timeline of nicotine withdrawal studies are outlined in Figure 20.  Naïve 

male mice were implanted with Alzet osmotic mini-pumps (model 2002- Alza 

Corporation, Palo Alto, CA) filled with either (-)-nicotine (48 mg/kg/day or 24 

mg/kg/day) or sterile physiological saline solutions.  The mini-pumps were surgically 

implanted s.c. under sterile conditions with pentobarbital anesthesia (35 mg/kg, i.p.).  

An incision was made in the back of the animals, and a pump was inserted.  Animals 

were sutured and allowed to recover before being returned to their home cages.  Eight 

days following each mini-pump implantation, mice were injected s.c with 2.0mg/kg of 

mecamylamine, a non-specific nicotinic antagonist, to precipitate withdrawal.  

Withdrawal testing was conducted as previously described in Chapter 2.  Briefly, mice 

were assessed for withdrawal signs in a battery of four tests: 5 min for anxiety-like 

behavior (on the elevated plus maze), 20 min observation of somatic signs (paw 

tremors, head shakes, backing, body tremors, ptosis), hyperalgesia, and 30 min in 

locomotor activity chambers. 

One day following withdrawal testing, mice were lightly anesthetized using 

ether and mini-pumps were removed.  A small incision was made on the back of the 

neck in order to remove the mini-pump and the wound was closed with a suture.  Mice 

were returned to their home cages in between surgeries and monitored on a weekly 

basis.  Each experimental group was implanted with a second mini-pump according to 
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the timeline below (Figure 20).  Withdrawal testing was conducted in the same manner 

as previously described. 

 

PND 21:

1st MP implanted

PND 28:

1st withdrawal
Early Adolescent

PND 70:

2nd MP implanted

PND 78:

2nd withdrawal

Late Adolescent

PND 49:

1st MP implanted

PND 70:

2nd withdrawal

PND 57:

1st withdrawal

PND 78:

2nd withdrawal

Adult

PND 70:

1st MP implanted

PND 120:

2nd MP implanted

PND 128:

2nd withdrawal
PND 78:

1st withdrawal

 

Figure 20. Timeline for nicotine withdrawal studies.  Nicotine mini-pumps were 
implanted during early adolescence (PND 21), late adolescence (PND 49), or 
adulthood (PND 70) for 7 days.  Withdrawal testing was precipitated by 
mecamylamine.  After a recovery period, a second mini-pump was implanted and 
withdrawal testing was conducted again in the same manner.  MP=mini-pump, 
PND = postnatal day 
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Rubidium Efflux Studies

 Both early adolescent and adult male mice were injected s.c. with 

nicotine or saline for 7 days.  Only one dose of nicotine (0.5 mg/kg) was used in these 

studies based on previous behavioral results indicating that this dose was effective at 

inducing long-term behavioral changes.  The precise procedure for the rubidium efflux 

assay was the same as previously described in Chapter 5 except that only two 

concentrations of nicotine were utilized to stimulate the synaptosomes (1µM and 

10µM). 

C. Results 

Effects of Adolescent Nicotine Exposure on Nicotine-Induced Rewarding Effects 

Figure 21 presents the effects of early adolescent nicotine exposure on nicotine 

reward in adulthood.  As expected, when conditioned with saline in the CPP paradigm, 

no preference was obtained.   The nicotine challenge dose (0.5 mg/kg) did elicit a 

preference for the drug-paired side after all patterns of exposure.  In panels (a) and (b), 

nicotine pretreatment in adolescence did not affect nicotine-induced reward in 

adulthood. On the other hand, panel (c) demonstrates that at the moderate dose of 0.5 

mg/kg nicotine, repeated nicotine exposure during early adolescence does enhance 

nicotine reward in adulthood.    
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Figure 21. Effect of early adolescent nicotine exposure on nicotine-induced reward 
in adulthood.  The y-axis represents preference score and the x-axis expresses 
adolescent treatment followed by treatment in the CPP paradigm.  Short term (a) 
and intermittent (b) exposure to nicotine during early adolescence does not 
enhance nicotine-induced conditioned place preference in adulthood; however 
frequent exposure (c) to a moderate dose of nicotine during early adolescence 
results in elevated nicotine-induced reward through a CPP model.  * p<.05 from 
respective saline control; # p<.05 from sal/nic group in the same graph; $ p<.05 
from nic0.5/nic groups in acute (a) and intermittent (b) graphs. 
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It has been proposed that early adolescence is the period which is particularly 

susceptible to drug induced alterations in behavioral responses, but this age-specific 

hypothesis has yet to be fully investigated.  To examine if this hypothesis is valid, we 

assessed the effects of nicotine exposure during various stages of development on 

nicotine-induced reward using the CPP model.  We also exposed a group of adult mice 

to nicotine and tested them in the CPP model seven weeks later to see if the enhanced 

reward was an effect of previous nicotine exposure alone or if the effect was indeed 

unique to the adolescent phase.  Results from these studies are presented in Figure 22.   

Once again, in both the late adolescent and adult models, no preference was seen when 

mice were conditioned with saline.  Conditioning the mice with nicotine (0.5 mg/kg) 

did result in a preference for the drug-paired side, but again no differences were 

detected based on prior nicotine exposure. 
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Figure 22.  Effect of late adolescent and adulthood nicotine exposure on nicotine-
induced reward.  The y-axis represents preference score and the x-axis expresses 
adolescent treatment followed by treatment in the CPP paradigm. Nicotine 
exposure in late adolescence (a) and adulthood (b) does not elevated nicotine-
induced rewarding effects later in development as measured by a CPP model. * 
p<.05 from respective saline control; # p<.05 from sal/nic group in the same graph 
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Repeated Nicotine Withdrawal Studies 

 The effects of adolescent nicotine exposure on nicotine withdrawal were also 

investigated.  For these experiments, mice were evaluated for withdrawal signs twice; 

once during an adolescent phase and once as adults.  Figure 23 shows withdrawal data 

from a 7 day mini-pump infusion at a dose of 48 mg/kg/day in early adolescent and 

adult mice.  As expected from previous data shown in Chapter 2, adolescent mice (PND 

21) displayed significantly attenuated somatic signs of withdrawal (Fig. 23a) as 

compared to adult mice (PND 70).  In a hyperalgesia measure (Fig. 23c), adults 

demonstrated withdrawal while adolescents failed to do so.  Anxiety-like behavior, an 

affective sign of withdrawal, was also noted in adults, but not adolescents (Fig. 23b). 

Furthermore, when adolescents had fully developed into adults (PND 70-2nd), they 

continued to display an attenuation of somatic signs.  There was also no indication of 

withdrawal in the elevated plus maze or hot plate tests.  Adult mice which were tested 

again after 7 weeks of maturation (PND 120-2nd) continued to display withdrawal in all 

four measures tested.  
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Figure 23.  Effect of early adolescent nicotine exposure on nicotine withdrawal.  
Mice were tested for withdrawal as previously described. The x-axis denotes the 
age of mice upon MP implantation.  PND 21=early adolescent; 1st withdrawal; 
PND 70 (2nd)=2nd withdrawal for early adolescent group; PND 70=adult mice; 1st 
withdrawal; PND120 (2nd)=2nd withdrawal for adult group. * p<0.05 from saline 
group and #p<0.05 from adult nicotine treatment. Each point represents the mean 
± S.E. of 12 mice.  MP=mini-pump, PND = postnatal day 
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 SS EPM HP LA 

PND 21- sal/sal 4 ± 1 34.8 ± 4.7 11.3 ± 1.8 952 ± 77 

PND 21-nic/sal 5 ± 1 29.3 ± 5.9 9.5 ± 0.8 1141 ± 42 

PND 70 (2nd) 
sal/sal 

2 ± 0 30.1 ± 1.9 10.1 ± 0.6 1053 ± 54 

PND 70 (2nd) 
nic/sal 

3 ± 1 31.7 ± 1.4 9.5 ± 0.4 1101 ± 76 

PND 70-sal/sal 6 ± 3 41.5 ± 0.6 9.3 ± 1.3 1102 ± 56 

PND 70-nic/sal 8 ± 1 33.6 ± 6.0 9.6 ± 0.5 1154 ± 47 

PND 120 (2nd) 
sal/sal 

3 ± 0 27.8 ± 2.5 8.7 ± 0.3 1055 ± 41 

PND 120 (2nd) 
nic/sal 

3 ± 0 32.7 ± 2.3 8.1 ± 0.3 1006 ± 36 

 
Table 7. Summary of control data for early adolescent repeated nicotine 
withdrawal study (48 mg/kg/day).  Data are represented as the mean response ± 
S.E. of 12 mice.  No significant differences were observed in any of the control 
groups.  PND = post natal day; SS = somatic signs; EPM = elevated plus maze; HP 
= hot plate; LA = locomotor activity. 
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One of the goals of this study was to determine if all phases of adolescence 

represent a unique period in which nicotine exposure can lead to long-lasting behavioral 

effects or if this phenomenon was unique to early adolescence.  Therefore, we repeated 

the above study using late adolescent mice which is shown in Figure 24.  Unlike the 

early adolescent mice, the late adolescent phase did not result in the same vulnerability 

to lasting behavioral adaptations.  Late adolescent mice displayed withdrawal signs 

consistent to those of adult mice in that there were no significant differences in any of 

the tests.  Exposure to nicotine during late adolescence did not attenuate withdrawal 

signs once the animals had developed into adulthood. 
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 Figure 24.  Effect of late adolescent nicotine exposure on nicotine withdrawal.  
Mice were tested for withdrawal as previously described. The x-axis denotes the 
age of mice upon MP implantation.  PND 49=late adolescent; 1st withdrawal; PND 
70-2nd=2nd withdrawal for late adolescent group; PND 70=adult mice; 1st 
withdrawal; PND 120-2nd=2nd withdrawal for adult group. * p<0.05 from saline 
group and #p<0.05 from adult nicotine treatment. Each point represents the mean 
± S.E. of 12 mice.  MP=mini-pump, PND = postnatal day 
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 SS EPM HP LA 

PND 49- sal/sal 4 ± 0 24.1 ± 5.4 8.5 ± 0.5 1247 ± 103 

PND 49-nic/sal 3 ± 1 22.4 ± 4.4 8.2 ± 0.9 1186 ± 103 

PND 70 (2nd) 
sal/sal 

3 ± 0 29.5 ± 2.1 9.2 ± 0.4 1176 ± 88 

PND 70 (2nd) 
nic/sal 

3 ± 1 28.0 ± 3.0 8.4 ± 0.8 1097 ± 52 

PND 70-sal/sal 4 ± 0 33.2 ± 2.7 9.1 ± 0.5 1078 ± 54 

PND 70-nic/sal 3 ± 1 30.3 ± 3.2 8.6 ± 0.7 1105 ± 70 

PND 90 (2nd) 
sal/sal 

3 ± 1 29.8 ± 3.1 8.4 ± 0.9 1098 ± 48 

PND 90 (2nd) 
nic/sal 

2 ± 2 34.1 ± 2.9 9.0 ± 1.0 1147 ± 63 

 
Table 8. Summary of control data for late adolescent repeated nicotine withdrawal 
study (48 mg/kg/day). Data are represented as the mean response ± S.E. of 12 mice.  
No significant differences were observed in any of the control groups.  PND = post 
natal day; SS = somatic signs; EPM = elevated plus maze; HP = hot plate; LA = 
locomotor activity. 
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Another important component of our nicotine withdrawal studies was to 

examine the duration of adolescent nicotine exposure.  In this study, early adolescent 

mice were only exposed to nicotine for 3 days prior to precipitating withdrawal.  In 

somatic signs (Fig. 25a), withdrawal signs were noted in both age groups, but early 

adolescent mice continued to display a significant decrease in withdrawal  intensity as 

compared to adults.  Only adults displayed withdrawal signs in the elevated plus maze, 

hyperalgesia, and hyperactivity tests.  Once again, when early adolescent mice were 

allowed to develop to adults (PND 70-2nd), they retained their attenuated level of 

somatic withdrawal signs. 
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Figure 25.  Three day model of early adolescent nicotine exposure on nicotine 
withdrawal.  Mice were tested for withdrawal as previously described in the 
methods section. The x-axis denotes the age of mice upon MP implantation.  PND 
21=late adolescent; 1st withdrawal; PND 70(2nd)=2nd withdrawal for late adolescent 
group; PND 70=adult mice; 1st withdrawal. * p<0.05 from saline group and 
#p<0.05 from adult nicotine treatment. Each point represents the mean ± S.E. of 
12 mice.  MP=mini-pump, PND =postnatal day 
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 Nicotine dose was also considered in these studies since it is common for 

adolescents to smoke less than adults.  In this final study, we repeated the 7 day model 

of exposure but lowered the nicotine mini-pump dose to 24 mg/kg/day.  Once again, we 

were able to consistently precipitate withdrawal in this model.  Only adult mice 

displayed significant withdrawal signs in the plus maze and hot plate tests.  Similar to 

our higher dose model, both age groups displayed significant somatic withdrawal signs, 

but adolescents showed attenuation in the withdrawal intensity (Fig. 26a).  After 

maturing to adults, mice which were previously exposed to nicotine as adolescents 

continued to show a reduction in somatic signs. 
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Figure 26.  Effect of a low dose of early adolescent nicotine exposure on nicotine 
withdrawal.  Mice were tested for withdrawal as previously described with MP 
dose reduced to 24 mg/kg/day. The x-axis denotes the age of mice upon MP 
implantation.  PND 21=early adolescent; 1st withdrawal; PND 70 (2nd)=2nd 
withdrawal for early adolescent group; PND 70=adult mice; 1st withdrawal; 
PND120 (2nd)=2nd withdrawal for adult group. * p<0.05 from saline group and 
#p<0.05 from adult nicotine treatment. Each point represents the mean ± S.E. of 
12 mice.  MP=mini-pump, PND = postnatal day 
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 SS EPM HP LA 

PND 21- sal/sal 3 ± 0 33 ± 2.6 7.6 ± 0.5 1182 ± 48 

PND 21-nic/sal 2 ± 1 32.3 ± 3.5 7.5 ± 0.4 1072 ± 25 

PND 70 (2nd) 
sal/sal 

3 ± 0 29.5 ± 2.3 7.4 ± 0.4 1293 ± 36 

PND 70 (2nd) 
nic/sal 

2 ± 1 34.6 ± 3.5 8.8 ± 1 1116 ± 42 

PND 70-sal/sal 3 ± 0 31.6 ± 2.2 8.2 ± 0.5 1233 ± 75 

PND 70-nic/sal 2 ± 0 31.5 ± 1.9 7.7 ± 0.5 1173 ± 15 

PND 120 (2nd) 
sal/sal 

2 ± 0 28.9 ± 2.1 8.0 ± 0.2 1265 ± 78 

PND 120 (2nd) 
nic/sal 

3 ± 1 33.1 ± 2.7 7.3 ± 0.5 1221 ± 35 

 
Table 9. Summary of control data for repeated nicotine withdrawal (24 
mg/kg/day).  Data are represented as the mean response ± S.E. of 12 mice.  No 
significant differences were observed in any of the control groups.  PND = post 
natal day; SS = somatic signs; EPM = elevated plus maze; HP = hot plate; LA = 
locomotor activity. 
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In Chapter 5, our data indicated that naïve adolescent mice demonstrated an 

enhanced functional response of neuronal nAChRs as compared to adult receptors.  We 

wanted to investigate the effects of adolescent nicotine exposure to see if this treatment 

would result in long-lasting effects of receptor function that correlate with behavioral 

changes.  Figure 27 shows the results of both adolescent and adult synaptosome 

stimulation after pretreatment with either nicotine or saline 7 weeks prior to testing.  

The cortex, hippocampus, and thalamus regions showed a dose-dependent increase in 

nAChR function between the 1µM and 10µM concentrations of nicotine.  In three out of 

four regions (all except cortex), the mice which were pretreated with nicotine 0.5 mg/kg 

in adolescence showed a significant elevation in nAChR function as compared to their 

saline controls.  In contrast, those mice treated with nicotine in adulthood did not 

demonstrate any differences as compared to the saline group.  At the 10µM 

concentration, there was a significant increase in the adolescent mice receiving nicotine, 

but adult mice showed no differences based on pretreatment. 
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Figure 27.  The effect of early adolescent nicotine exposure on nAChR function in 
adulthood.  Two concentrations of nicotine are plotted on the x-axis and total area 
under the curve (AUC) is represented on the y-axis.  Bars represent adolescent and 
adult mice which were pretreated with either saline or nicotine. Results are 
expressed as mean AUC ± S.E. * p<0.05 from respective saline control; # p<.05 
from Adult-Nic group at same concentration. 
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D. Discussion 

 Data from these studies show that adolescent nicotine exposure affects both 

nicotine reward and withdrawal in adulthood.  In the CPP model we have shown that 

early, but not late adolescent nicotine exposure elevates nicotine reward in adulthood in 

a dose- and duration-dependent manner.  Mice which were exposed to a moderate dose 

of nicotine (0.5 mg/kg) in a frequent administration pattern demonstrated enhanced 

rewarding effects of nicotine as adults.  The lower dose of nicotine (0.1 mg/kg) as well 

as less frequent exposure patterns did not result in the same level of enhanced reward.  

To eliminate the possibility that nicotine exposure can induce alterations in behavior at 

any age and demonstrate the selectivity of these changes, we also exposed adult mice to 

nicotine and tested them in the CPP model 7 weeks later.  However, enhancement of 

rewarding effects was not seen using this paradigm.  This result shows that moderate 

exposure to smoking during adolescence can have significant consequences in 

adulthood.  Furthermore, it supports earlier data suggesting that early adolescence (PND 

24-31) is a unique period for vulnerability to nicotine dependence.   

 On the other hand, nicotine exposure and withdrawal during adolescence had 

long-lasting effects on nicotine withdrawal in adulthood.  Both short term (3 days) and 

long term (7 days) nicotine exposure caused persistent decreases in withdrawal signs 

once mice had reached adulthood.  In addition, both a high (48 mg/kg/day) and low (24 

mg/kg/day) dose of nicotine resulted in this same attenuation.  However, we have again 

demonstrated that this phenomenon is unique to the early adolescent phase since late 

adolescent nicotine exposure did not result in a persistent decrease in withdrawal signs. 
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 Interestingly, our results indicate that early adolescent, but not adulthood, 

nicotine exposure causes an elevation of nAChR function 7 weeks following injections 

(in adulthood).  It appears that when nicotine is given in adolescence there are long-

lasting effects at the receptor level which translate into changes in behavioral response.  

Data from this study and from the previous rubidium efflux study in Chapter 5 offer a 

potential mechanism by which nicotine induced persistent alterations in levels of 

dependence.  However, mechanisms of the persistent increase in receptor function are 

not clear since binding studies were not conducted.  

Our data imply that early adolescence is a critical period in becoming dependent 

on nicotine for a lifetime.  Even short periods of exposure to cigarette smoking, which 

are often seen in the adolescent population, could have long-lasting and detrimental 

effects on smoking behavior.  Studies from the World Health Organization show 

evidence that around 50% of those who start smoking in adolescent years go on to 

smoke for 15 to 20 years (2002).  These statistics should indicate the critical nature of 

providing influential prevention messages at an early age.  The longer a child or 

teenager is prevented from smoking or exposure to nicotine, the higher the chance of 

preventing lifetime dependence.  Furthermore, the issue of secondhand smoking should 

be considered.  Indeed, human studies show that adolescents who are exposed to 

secondhand smoke are more likely to develop chronic health issues such as asthma 

(Tager 2008) and earaches (Lee et al. 2003), but how this type of exposure affects 

nicotine dependence in those children has yet to be explored.  Our results could have 

important implications in prevention messages and even policy making.  
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THE EFFECTS OF ADOLESCENT NICOTINE EXPOSURE ON COCAINE-
INDUCED BEHAVIORAL RESPONSES 

 

A. Introduction 

In addition to adolescent nicotine exposure increasing lifetime nicotine 

dependence, several studies have investigated the possibility of nicotine serving as a 

drug which will lead adolescents to further illicit drug use later in life.  Indeed, nicotine 

is one of the first and most commonly abused drugs in adolescence and is known to be a 

strong predictor of subsequent alcohol and other drug abuse (Kandel et al. 1992).   

Furthermore, the adolescent period is one of dramatic structural changes involving 

synaptic pruning, apoptosis, and cell migration (Huttenlocher 1984; Lidow and Rakic 

1992).  Adolescent nicotine exposure is thought to cause alterations in brain structure 

and function as well as changes in the mesolimbic reward pathway which is highly 

involved in drug addiction (Slotkin 2004).  Specifically, researchers have demonstrated 

nicotine’s ability to alter important neurotransmitter systems such as the serotonergic, 

glutaminergic, cholinergic, and dopaminergic among others (Trauth et al. 2000; Xu et 

al. 2002; Adriani et al. 2004).  For example, adolescent rats (PND 30 to PND 47) given 

nicotine via mini-pump demonstrated a decrease in serotonergic receptors (5HT2) in the 

hippocampus and cerebral cortex (Xu et al. 2002).  Adriani et al. (2004) measured 

levels of AMPA GluR2/3 subunits, thought to be involved in the control of addictive 

behaviors two months following adolescent nicotine exposure. The results showed a 

dose-dependent downregulation of these subunits in the striatum and hippocampus, but 

comparable exposure during adulthood had either opposite or no effects.   

These structural alterations often lead to changes in behavioral responses to 

other drugs of abuse as well.  For example, adolescent nicotine exposure resulted in 

long-lasting changes in the rewarding properties of cocaine and alcohol (Kelley and 
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Middaugh 1999; Kelley and Rowan 2004).  Kelley and Rowan (2004) found that 

adolescent mice exposed to nicotine (0.3, 1.0, or 3.0 mg/kg) from PND 25-57 showed a 

decreased in response to cocaine’s rewarding effects when tested after a 28 day drug-

free period.  On the other hand, mice demonstrated an increased response to cocaine’s 

locomotor activating effects.  Additionally, McQuown et al. (2006) showed that in rats, 

i.v. pretreatment with nicotine (0.03 mg/kg/0.1ml) in adolescence for 4 days resulted in 

enhanced cocaine-reinforced responding.   

Cocaine and nicotine share common neuronal mechanisms which could suggest 

that adolescent nicotine exposure can result in alterations to behavioral responses to 

cocaine. Results of three earlier studies suggest such implications (Kelley and 

Middaugh 1999; Kelley and Rowan 2004; McQuown et al. 2006).  However, these 

previous studies have not investigated these effects under the same conditions. 

Moreover, they have not addressed important considerations such as dose, duration of 

exposure, and route of administration.  In this set of studies, we have characterized the 

effects of adolescent nicotine exposure on three separate cocaine-induced behaviors in 

mice which represent different aspects of cocaine dependence.  It is important to 

examine a variety of behaviors in the same species and under the same pretreatment 

conditions in order to gain a more complete understanding of these effects.  First, we 

examined both high and low doses of nicotine, as well as duration of nicotine exposure, 

on cocaine-induced reward using the CPP model.  Second, we evaluated the effects of 

these parameters on cocaine’s acute effects using locomotor activity testing.  Finally, 

we investigated locomotor sensitization to cocaine in pretreated animals since this 

model has been established as a good indicator of neuronal plasticity effects (Robinson 

and Becker 1986).   
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B. Methods 

Drugs
(-)-Nicotine bitartrate and mecamylamine hydrochloride were purchased from 

Sigma Chemical Company (Milwaukee, WI). All doses are expressed as free base.  

Cocaine was provided by the National Institute for Drug Abuse. 

Adolescent Injection Protocol 

Mice received nicotine during early adolescence (PND 21-31), late adolescence 

(PND 49-59) or adulthood (PND 70+).  Based on studies in Chapter 6, we choose to 

only use either an acute pattern (1 day) or a repeated pattern of exposure (7 days) in 

duration.  Nicotine (0.1 and 0.5 mg/kg) or saline was administered s.c. twice daily with 

injections being approximately 6 hours apart (9am and 3pm).  Mice were kept in their 

home cages and allowed to mature until they had reached adulthood at which point they 

were evaluated in paradigms as described below. 

Conditioned Place Preference Studies 

Once adolescent mice had reached adulthood (PND 70), they were tested for 

cocaine reward using conditioned place preference. The precise protocol for 

conditioned place preference was the same as previously described in Chapter 2.  

Briefly, mice have a pre-conditioning day which is a drug free assessment of baseline 

preference in a three compartment chamber.  This is followed by three days of 

conditioning to either nicotine or cocaine.  Only one conditioning dose of cocaine was 

used in this model (10 mg/kg i.p.).  The final day of the paradigm is the same as day 1 

and assesses preference after the conditioning period.  Preference scores are expressed 
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as time spent on drug-paired side minus time spent on saline-paired side.  A positive 

number indicated a preference for the drug-paired side, while a negative number 

indicated an aversion to the drug-paired side.  A number at or near zero indicated no 

preference for either side. 

Acute Locomotor Activity 

Another group of mice were tested for cocaine-induced hyperactivity using 

locomotor chambers after reaching adulthood.  Dose-response curves were generated 

for each pretreated group (saline, nicotine 0.1 mg/kg, or nicotine 0.5 mg/kg).  Mice 

were injected i.p with saline or various doses of cocaine (5, 10, and 15 mg/kg) and then 

placed into individual Omnitech photocell activity cages (Columbus, OH; 28 x 16.5 cm) 

10 min after injection.  Mice were allowed to habituate to the chamber for 5 minutes 

before data collection began.  Interruptions of the photocell beams (two banks of eight 

cells each) were then recorded for the next 30 min in 10 min intervals.  Data are 

expressed as number of photocell interruptions.  

Cocaine Locomotor Sensitization 

 For this study, only early adolescent mice (PND 22-28) were pretreated with 

saline or nicotine (0.5 mg/kg) injections.  Our protocol was based on the study by Biala 

(2003).  Briefly, once the mice had reached PND 70, a 13 day cocaine sensitization 

protocol began.  On day 1, mice were given a saline injection (i.p.) and placed into 

locomotor activity chambers for a 30 minute habituation period.  Immediately 

following, mice were removed from the chambers and activity counts were recorded.  

Mice were randomly divided into three groups: saline-saline, saline-cocaine, and 
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cocaine-cocaine (groups represent the acquisition day drug followed by the challenge 

day drug).  Mice were then given another injection of either saline or cocaine 20 mg/kg 

(i.p.), depending on the assigned group, and placed in the chambers again for a 30 

minute acquisition period.  This procedure was repeated on days 2-5.  Days 6-12 were 

considered a drug free week in which the animals were not given injections or exposed 

to the chambers.  On day 13, mice were tested again in the same manner as described 

for days 1-5, but cocaine mice received a challenge dose of cocaine of 5 mg/kg (i.p.).  

Counts were recorded after a 30 minute test period. 

C. Results 

Effect of Adolescent Nicotine Exposure on Cocaine-Induced Conditioned Place 

Preference 

 Figures 28-30 show the results of our cocaine-induced CPP study after mice had 

received nicotine at various stages of development.  In Figure 28, mice received either 

an acute (1 day) or repeated (7 day) exposure to nicotine during early adolescence.   All 

mice which were conditioned with cocaine in the CPP model developed significant 

preference for the drug-paired side as compared to their respective saline controls.   

Interestingly, mice which had a 7 day exposure to the higher dose of nicotine (0.5 

mg/kg), displayed a significantly enhanced level of preference as compared to those 

mice which were pretreated with saline.  In addition, this group showed significantly 

enhanced preference as compared to the same treatment group in the late adolescent 

study (Figure 29) as indicated by the $ symbol in Figure 28. On the other hand, the 

lower dose of nicotine (0.1 mg/kg) did not produce a significant enhancement of 
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reward.  No differences were noted in the acute exposure paradigm. The results of 

cocaine-induced CPP following late adolescent and adult nicotine exposure are shown 

in Figures 29 and 30 respectively.  As expected, all mice conditioned with cocaine 

during CPP testing displayed significant preference for the drug paired side.  In contrast 

to data in early adolescent mice, late adolescent mice did not demonstrate any 

significant differences based on pretreatment status in either the acute or repeated 

exposure protocol.  Similarly, mice which received nicotine exposure during adulthood 

displayed approximately equal levels of preference for cocaine despite varying 

pretreatment groups.  These results indicate that the enhancement of cocaine-induced 

preference is unique to the early adolescent period and is not due to previous nicotine 

exposure alone. 
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Figure 28. Effects of early adolescent nicotine exposure on cocaine-induced CPP in 
adulthood.  The y-axis represents preference score and the x-axis expresses 
adolescent treatment followed by treatment in the CPP paradigm. Repeated 
nicotine exposure in early adolescence elevated cocaine-induced rewarding effects 
in adulthood. * p<.05 from respective saline control; # p<.05 from sal/nic group in 
the same graph; $ see text in results section 
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Figure 29. Effects of late adolescent nicotine exposure on cocaine-induced CPP in 
adulthood.  The y-axis represents preference score and the x-axis expresses 
adolescent treatment followed by treatment in the CPP paradigm. * p<.05 from 
respective saline control 
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Figure 30. Effects of adulthood nicotine exposure on cocaine-induced CPP 7 weeks 
later.  The y-axis represents preference score and the x-axis expresses adolescent 
treatment followed by treatment in the CPP paradigm. * p<.05 from respective 
saline control 
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Effects of Adolescent Nicotine Exposure on Cocaine-Induced Hyperactivity 

 In this study, we examined the effects of adolescent nicotine pretreatment on 

cocaine’s acute effects using a locomotor activity test.  Figures 31-33 show the results 

from these studies.  Figure 31 depicts the results from both an acute (1 day) and 

repeated (7 day) nicotine exposure pattern during early adolescence.  No changes were 

observed after acute exposure; however those mice which were pretreated with the 

higher dose of nicotine (0.5 mg/kg) in early adolescence displayed a significant 

elevation in cocaine-induced hyperactivity as compared to those pretreated with saline 

or a low dose of nicotine (0.1 mg/kg).  Figures 32 and 33 show the results from studies 

where pretreatment occurred in late adolescence and adulthood respectively.  No 

significant differences were seen based on pretreatment injections in either age group 

confirming that the effect seen in Figure 31 is unique to the early adolescent period.  

Interestingly, saline treated mice undergoing repeated nicotine exposure displayed a 

trend for slightly decreased activity.  This was consistent across all three age groups and 

is likely due to the stress of repeated injections since this behavior was not seen after 

acute exposure. 
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Figure 31.  Cocaine-induced hyperactivity following nicotine exposure in early 
adolescence.  Mice were pretreated with saline or nicotine during early adolescence 
either acutely (1 day) or repeatedly (7 days) and were tested for cocaine 
hyperactivity in adulthood. n=6/group *p<0.05 from saline pretreatment. 
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Figure 32.  Cocaine-induced hyperactivity following nicotine exposure in late 
adolescence.  Mice were pretreated with saline or nicotine during late adolescence 
either acutely (1 day) or repeatedly (7 days) and were tested for cocaine 
hyperactivity in adulthood. n=6/group  
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Figure 33.  Cocaine-induced hyperactivity following nicotine exposure in 
adulthood. Mice were pretreated with saline or nicotine adulthood either acutely (1 
day) or repeatedly (7 days) and were tested for cocaine hyperactivity 7 weeks later. 
n=6/group  
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Effects of Adolescent Nicotine Exposure on Locomotor Sensitization to Cocaine 

Finally, results from Figure 34 show our study examining the effects of early 

adolescent nicotine treatment on cocaine-induced behavioral sensitization.   Mice which 

were pretreated with nicotine in adolescence are shown in the solid bars while saline 

pretreated mice are shown in the non-solid bars.  During the acquisition period, mice 

which were treated with cocaine (20 mg/kg) demonstrated enhanced locomotor activity 

as expected with no differences due to adolescent pretreatment (*p<.05 as compared to 

sal-sal).  On challenge day two groups received an injection of cocaine i.p. (5 mg/kg).  

Both saline and nicotine pretreated mice who were treated with cocaine during 

acquisition displayed enhanced locomotor activity as compared to those mice treated 

with saline during acquisition.  However, mice which were pretreated with nicotine in 

adolescence showed a significant elevation in cocaine-induced locomotor activity as 

compared to saline pretreated animals.  These results show that we were able to induce 

locomotor sensitization to cocaine and that early adolescent nicotine exposure enhances 

this effect.  
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Figure 34.  Cocaine-sensitization in ICR male mice.  Early adolescent mice were 
pretreated with either saline (non-solid bars) or nicotine (solid bars) for 7 days and 
were tested for cocaine-induced locomotor sensitization in adulthood.  Treatment 
groups are represented by acquisition drug-challenge drug in the legend (ex. sal-
coc = saline during acquisition and cocaine on challenge day) *p<.05 from sal-sal 
control on the same day; # p<.05 from sal-coc group; $p<.05 from saline 
pretreated coc-coc group. 
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D. Discussion 

 The use of tobacco often begins during the adolescent period.  Furthermore, it is 

well-established that the commencement of smoking at a young age correlates with a 

higher prevalence of nicotine dependence in adulthood (Colby et al. 2000; Kandel and 

Chen 2000).  However, there is not as much evidence for the effects of cigarette 

smoking on dependence for other drugs of abuse.  Some studies have shown that 

nicotine is a strong predictor of subsequent drug use (Kandel et al. 1992), but the exact 

mechanism behind these changes is unknown.    

 Specifically, we have chosen to investigate the effects of adolescent nicotine on 

cocaine-induced behavior.  To date, studies have shown mixed results in this regard, but 

several factors, such as different models, strains, and species, could contribute to these 

differences. We decided to utilize several paradigms in order to investigate the 

consistency of nicotine’s effects in mice. In a CPP model of reward, our results 

demonstrated that the higher dose of nicotine (0.5 mg/kg) given for 7 days enhanced 

preference for a cocaine-paired environment.   In contrast to our findings, Kelley and 

Rowan (2004) found that C57BL/6J mice demonstrated a decrease in cocaine-induced 

reward as measured by CPP after 25 days of adolescent nicotine exposure.  This 

discrepancy could be accounted for by the difference in mouse strain (C57BL/6J vs. 

ICR) as well as length of exposure (25 days vs. 7 days).   Interestingly, they noted that 

this exposure led to an increase in cocaine’s motor activating effects which is in 

agreement with the results from our acute locomotor study.   Other studies in rats which 

have utilized a shorter duration of adolescent nicotine exposure have found that the 
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rewarding effects of cocaine are enhanced.  Indeed, McQuown et al. (2006) reported 

that a low dose of nicotine treatment for four days in adolescence enhanced the 

reinforcing effects of cocaine in an i.v. self-administration model using a FR1 schedule.  

Similarly, rats given nicotine from PND 35 to 44 demonstrated an enhancement of 

cocaine-induced reward using a CPP paradigm (McMillen et al. 2005).    

Our findings in the CPP model strongly suggest that nicotine during adolescence 

may act to cross-sensitize the brain to cocaine’s rewarding effects.  Indeed adolescence 

is a unique period of brain maturation and development.  Much of the motivational 

circuitry controlling reward and reinforcement is still undergoing alterations (Chambers 

et al. 2003).  Specifically, dopaminergic projections from the PFC to the NAc may be 

influenced by this exposure which would have effects on the pleasurable experiences 

associated with drugs of abuse such as cocaine.  In addition, nicotine may be acting 

directly on the maturing dopamine system (Andersen 2003).  It has been established that 

nicotinic receptors play in a role in regulation of dopaminergic neuronal projections 

(Cragg 2006) and it is possible that nicotine exposure during a critical period such as 

adolescence may yield long-lasting changes in this system.  Indeed, quantity of 

dopamine transporters will be important to examine since this serves as a major target 

for cocaine.  

Also in agreement with our reward studies is data from our locomotor 

sensitization model which is linked to the establishment of drug dependence.  We have 

found that a 7 day nicotine pretreatment in early adolescence enhanced sensitization to 

cocaine on challenge day as compared to saline pretreatment.  To our knowledge, this is 
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the first study to examine the effect of adolescent nicotine exposure on cocaine-induced 

sensitization in mice.  These results suggest that early nicotine exposure may correlate 

with an increased risk of relapse after a period of withdrawal and further implicate a 

role for dopamine in the cross-sensitization to other drugs of abuse.  Implications to 

human studies are also evident.  For example, adolescents who had previously smoked 

cigarettes were found to have higher initial “wanting” scores and were more likely to 

become cocaine-dependence than non-smokers (Lambert et al. 2006).   

It is of interest to note that an acute exposure to nicotine did not elicit the same 

effects as a repeated exposure pattern in our CPP and acute locomotor models.  This 

finding implies that long-lasting alterations in neurochemical systems require activation 

of targets involved in synaptic plasticity or gene expression.  The importance of this 

observation will be further addressed in the general discussion.  Taken together, results 

from this chapter support the hypothesis that adolescent nicotine exposure is able to 

enhance susceptibility to other drugs of abuse as well.  Once again, this result stresses 

the importance of preventing adolescent experimentation with tobacco as it can rapidly 

cause persistent changes in drug-induced behavioral responses. 
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GENERAL DISCUSSION 

A.  Rationale and Summary of Overall Hypothesis 

 In the United States, smoking-related illnesses cause more than 430,000 deaths 

and cost more then $150 billion annually (CDC MWRR 2002).  Most of these lifetime 

smokers begin smoking during adolescence (Chassin et al. 1990).  It is common for 

teenagers to explore tobacco and alcohol use during the developmental phase of 

adolescence; however many adolescent smokers show loss of autonomy over nicotine 

after just a few cigarettes (DiFranza 2002) despite the desire to quit (Eissenburg and 

Balster 2000).   Factors such as cravings and withdrawal symptoms are frequently cited 

by this age group as reasons for unsuccessful quit attempts (Johnson 1982; Biglan and 

Lichtenstein 1984).   Indeed, Colby et al. (2000) wrote a review suggesting that the 

current methods and approaches to smoking cessation in adolescence need further 

attention since successful cessation rates are modest.  It is imperative that better 

smoking cessation therapies and prevention messages are targeted specifically toward 

adolescents in order to decrease the number of smokers in the United States.   

 While the issue of adolescent nicotine dependence has recently become a focus 

of addiction research, there is still much work that needs to be done.  To date, we do not 

fully understand the mechanisms which underlie an adolescent’s heightened 

vulnerability to nicotine dependence.  Furthermore, the scope and extent of the changes 

in the neurobiology of adolescent smokers has yet to be determined.  Learning more 

about these changes will help us to target key areas which are affected by nicotine and 

to develop therapies which address these issues.  To this aim, our studies have focused 
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on the mechanisms of change which are involved in alterations of nicotine dependence.  

Specifically, we decided to center our studies on the initial target of nicotine, the 

nicotinic acetylcholine receptor in the brain.   

 The work in this dissertation addresses three areas of research and contributes to 

the further understanding of adolescent nicotine dependence.  First, we performed a full 

characterization of nicotine dependence in various age groups and both sexes to address 

age- and sex-related disparities.  Second, we examined possible molecular mechanisms 

which may underlie these differences.  Third, we sought to investigate the effects of 

adolescent smoking on future, and perhaps long-term, drug abuse. Overall, we 

hypothesized that vulnerability to nicotine dependence in adolescence is due to a shift in 

the balance between two key components of nicotine dependence, namely reward and 

withdrawal, and that this shift is due to nicotine-induced, region-specific changes in the 

brain.  Furthermore, we predicted that nicotine exposure in adolescence would lead to 

long lasting changes in nicotine-induced behavior as well as dependence on other drugs 

of abuse.    

B. Nicotine reward and withdrawal are age- and sex- dependent 

Studies from our first specific aim demonstrate that two key aspects of nicotine 

dependence, reward and withdrawal, are both age- and sex-dependent.  To our 

knowledge, this is the first study to characterize both of these variables under the same 

experimental conditions and in parallel.  The data from our studies show that early 

adolescence is a particularly vulnerable period for developing nicotine dependence, yet 

this susceptibility differs for each sex.   In adolescent males, the rewarding effects of 
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nicotine are enhanced as compared to adults while withdrawal signs are attenuated 

(Figures 2, 4, 6, and 8).  In contrast, we found that females demonstrated enhanced 

nicotine withdrawal effects, but an overall decrease in nicotine reward sensitivity 

(Figures 2, 5, 7, and 9).  There are important implications for these findings in the realm 

of nicotine dependence.  In adolescent females, it appears that withdrawal effects are 

the greater contributor to long-term smoking behavior because they prohibit effective 

smoking cessation attempts.  In fact, in agreement with our rodent studies, clinical 

findings report that women are less likely to quit smoking successfully due to high 

withdrawal effects (Leventhal et al. 2007).   On the other hand, male data revealed that 

adolescents are more likely to continue cigarette smoking due to the reinforcing effects 

of the drug as shown by an increased sensitivity to low doses of nicotine in the CPP 

model.  These studies show that smoking cessation therapies need to target the 

molecular mechanisms which are responsible for the most reinforcing stimuli.  In males, 

key pathways involved in nicotine reward need to be the focus of therapeutic strategies, 

while in females, targeting the nicotinic receptors which are highly involved in 

withdrawal effects may be more critical.   

 In addition to sex-dependent differences, our work clearly revealed age-

dependent differences in the intensities of important aspects of nicotine dependence.  

For example, we have shown that adolescents, given the same level of nicotine as 

adults, do express withdrawal signs; an important observation from a clinical 

perspective.  Although the intensity of nicotine withdrawal in adolescents is less than 

that of the adult in males, this finding still confirms that adolescent smokers show signs 
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of nicotine dependence.  It is also interesting to note that in practice, adolescent 

smoking intake behavior is not consistent with that of adults and it is likely that their 

actual nicotine intake is lower.   In this regard it is difficult to make a valid assessment 

of how withdrawal symptoms contribute to dependence.  In addition to withdrawal 

signs, we have shown that during adolescence positive rewarding effects of nicotine are 

enhanced in the male sex.   It could be argued that these positive effects contribute more 

to the enhanced vulnerability to nicotine addiction in males since there is a high desire 

for immediate positive reinforcement without proper assessment of risk during the 

adolescent period. 

C. Early adolescence presents a unique period of vulnerability to drug dependence 

 Several studies have demonstrated that adolescence as a whole is an important 

period in the development of drug dependence.  However, not many studies have 

examined the specific phases of adolescence and how each plays a role in this enhanced 

vulnerability.  Our work is the first to investigate the importance of adolescent phase in 

both reward and withdrawal models.   These studies were only conducted in males as 

this sex was chosen to be the focus of our project.  Our findings confirm that in male 

mice, the early adolescent phase is a unique time of development which is particularly 

vulnerable to the effects of nicotine.  In a CPP model, only early adolescent mice 

demonstrate an increased sensitivity to low doses of nicotine (Figure 14).  In addition, 

data from Figure 15 reveal that late adolescent mice exhibit the same intensity of 

withdrawal as adults while early adolescent have decreased withdrawal intensity in both 

somatic and affective signs.   In agreement with our work, several studies in rats have 
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shown that only early adolescent rodents develop preference to nicotine (Adriani et al. 

2002; Belluzzi et al. 2004).   Additionally, O’Dell et al. (2006) previously reported that 

somatic signs of nicotine withdrawal are attenuated in early adolescent male rats.  Our 

research confirms that finding in mice and adds to it by confirming this decrease in two 

additional somatic signs and one affective sign.   

 These data contribute to the understanding of previous human research which 

indicates that the initiation of smoking at an early age is known to lead to increased 

addiction and decreased cessation rates (Colby et al. 2000; Kandel and Chen 2000).   

Indeed, since the brain has not reached its full maturation, it has a heightened 

vulnerability to aspects of nicotine dependence which will lead to life-long smoking 

behavior.   In summary, these findings convey the importance of delaying teenage 

smoking as long as possible, if not preventing it completely, through better prevention 

messages.  Additionally, clinical trials must include these younger age groups in their 

studies.  It will also be beneficial to address the interactions of pubertal status and 

hormone development with such clinical treatment strategies as the effectiveness of 

treatment may change with these factors. 

D.  Pharmacological and Molecular Mechanisms Involved in Nicotine Dependence 

 Chapters 3 and 5 of this dissertation address specific in vivo and in vitro 

mechanisms which may play a role in the enhanced propensity for adolescents to 

become dependent on nicotine.  In Chapter 3, we assessed both the acute sensitivity to 

nicotine as well as tolerance to nicotine in adult and adolescent mice of both sexes.  

These models were chosen because of the insight they provide into the differences 
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observed in previous behavioral models.  Acute sensitivity models allow a distinction in 

immediate response to a drug which has implications for disparities in nicotinic receptor 

function and activation.  Also, tolerance, or the capacity of the body to become less 

responsive to a drug following chronic use, is a phenomenon which has been shown to 

contribute to nicotine dependence (Damaj and Martin 1993; Robinson et al. 1996).   

Our data show that following acute treatment with nicotine, adolescent male 

mice displayed a nicotine-induced antinociception compared to adults in the tail-flick 

test.  The implication of this finding suggests that predisposition to maintain use of 

nicotine in adolescent males may be due to the lessening of aversive effects due to 

decreased sensitivity to the drug.  However, since no general decrease in nicotine’s 

acute effects was found in our studies this implies that acute sensitivity to nicotine is not 

a major factor.  Similarly, we observed a higher degree of tolerance to nicotine-induced 

antinociception in adolescent male mice in the hot-plate assay suggesting that this age 

group would need to increase their nicotine intake in order to attain the same level of 

effect as an adult.  This would lead to an increased smoking behavior and higher 

nicotine intake in adolescence resulting in increased vulnerability to nicotine 

dependence.  Once again, the other two measures of tolerance did not show significant 

results in the same manner implying that tolerance is only playing a minor role in 

adolescent vulnerability. 

In females, we observed an opposing trend in both acute sensitivity and 

tolerance as compared to males.  Increased sensitivity to nicotine was noted in one 

analgesic assay and the hypothermia test in adolescents.  Moreover, a lower degree of 
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tolerance was detected in adolescents in the hypothermia test, but no changes were seen 

in antinociceptive measures.   Since not all tests for acute sensitivity and tolerance to 

nicotine reflected similar shifts, we can assume that these mechanisms are not likely to 

be substantial contributors to age-dependent differences in nicotine reward and 

withdrawal. 

In addition to behavioral mechanisms, it is probable that molecular mechanisms 

are involved in age-related differences in nicotine dependence.   Indeed, alterations in 

receptor number and function as well as differences in downstream signaling would 

affect pharmacological responses to nicotine.  The goal of the experiments in Chapter 5 

was to investigate these possibilities in the male sex.   Some studies have shown that 

adolescent nicotine exposure has important molecular consequences.  Schochet et al. 

(2005) have shown that while nicotine exposure in general upregulates genes such as c-

fos, only adolescent nicotine exposure causes changes in levels of arc mRNA in the 

PFC.   Data from Azam et al. (2007) has shown that α5, α6, and α7 mRNA levels peak 

during adolescence before decreasing to a steady level in adulthood.   This same study 

also demonstrated that there are regional differences in expression of α5, α6, and β3 

mRNAs with elevated levels in the substantia nigra as compared to the ventral 

tegmental area.  It is clear that nicotine can have significant effects on brain 

development and maturation particularly during the adolescent period.  Yet a full 

understanding of receptor regulation and function is still lacking.  Our research aimed to 

contribute to the knowledge of the effects and to link molecular mechanisms to our 

behavioral observations. 
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Our results show that in four brain regions (striatum, cortex, hippocampus, and 

thalamus) nAChR function was enhanced in the adolescent as compared to the adult 

using a rubidium efflux assay.   Since these results could be due to several factors 

including the hypothesis that there is a greater quantity of basal nAChRs in adolescent 

mice, we sought to answer this question by using receptor binding studies.  Using 

various pharmacological tools, our data reveal no significant differences in total nAChR 

binding or binding for any specific nAChR subtype.  Since the previous study by Azam 

et al. (2007) found differences in mRNA levels for several nAChR subtypes, this was a 

surprising result.  However, disparities in mRNA levels do not always translate into 

changes in receptor expression therefore results must be interpreted with caution.  In 

addition to receptor binding, we also investigated nicotine-induced dopamine release 

from striatal synaptosomes.  Again, in contrast to previous findings (Azam et al. 2007), 

we did not see any significant differences in dopamine release.  Differences between 

our study and the study by Azam et al., which may account for disparities in the 

outcomes, include assay technique (microdialysis vs. synaptosomes in our study), age of 

subjects (PND 7 and 14 vs. PND 28-30 in our study), and species utilized (rats vs. mice 

in our study).  

Importantly, we have shown that adolescent nAChRs exhibit increased function 

when stimulated with nicotine.  The precise reasons for this increase are yet to be 

determined, but this functional response is likely to play a role in behavioral response to 

nicotine.  Indeed, this data correlates well with an enhanced responsiveness in the CPP 

model.  However, it does not correlate with the data from our acute studies in which 

  



www.manaraa.com

  151 

adolescent and adult male mice displayed no significant differences in three out of four 

measures in responses to acute nicotine.  It may be that differences in the biochemical 

measure are not enough to reach behavioral thresholds in a model using short exposure 

to nicotine such as that in our acute studies.  However, a sub-chronic or chronic dosing 

protocol, such as that used in CPP, is enough to surpass this threshold which is why 

differences are seen using this model. 

 This increase in nAChR function is not attributable; however, to an increase in 

the number of basal nAChRs during the adolescent period, despite previous data 

indicating an increase in mRNA expression for certain receptor subtypes (Azam et al. 

2007).  We have also shown that dopamine release from the striatum does not differ 

between adult and adolescent mice; a finding in contrast to results in the previously 

mentioned study done in rats.   It is likely that an increase in nAChR function causes 

alterations in downstream effectors which may play an important role in the behavioral 

differences.  Specific possibilities will be further discussed in the future directions 

section of the discussion. 

E.  Exposure to nicotine during early adolescence has persistent effects on nicotine 
dependence in adulthood 
 
 The third specific aim of this dissertation was to examine the effects of 

adolescent nicotine exposure on long-lasting nicotine dependence.  Clinical studies 

suggest that the earlier a person begins smoking, the more likely it is that he will 

develop a lifetime dependence on nicotine (Kandel and Chen 2000; Chassin et al. 

1990).  Several studies in rats have shown that adolescence is a critical period, but to 
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our knowledge, no studies in mice have been conducted.  In addition to developing 

these models in another species, we sought to examine the effects of dose, exposure 

duration, and phase of adolescence in models of nicotine reward and withdrawal. 

 Using the CPP model as an indication of nicotine reward, we found that male 

adolescent mice exhibited enhanced rewarding effects in a dose- and duration-

dependent manner.  That is to say, a repeated adolescent nicotine exposure pattern (7 

days) and a higher dose of nicotine (0.5 mg/kg) resulted in elevated reward levels in the 

CPP model when mice were tested in adulthood.  Moreover, this result was unique to 

mice exposed during early adolescence (PND 22-28) and was not seen when mice were 

exposed to nicotine during late adolescence (PND 50-56) or adulthood (PND 71-77).    

 These same parameters were also used to assess adolescent nicotine exposure on 

withdrawal in adulthood.  Similar to the reward model, we observed that early 

adolescent nicotine exposure caused a long-lasting attenuation of both somatic and 

affective withdrawal signs in adulthood.  In contrast to our reward studies, intensity of 

withdrawal signs decreased in adulthood after both short- (3 day) and long-term (7 day) 

nicotine exposure.  In addition, both high (48 mg/kg/day) and low (24 mg/kg/day) doses 

of nicotine produced this reduction.   Late adolescent and adulthood mice tested in this 

paradigm did not show diminished withdrawal signs when evaluated in adulthood again 

supporting the hypothesis that early adolescence is a particularly distinctive period for 

the development of nicotine dependence. 

 Taken together, these studies confirm that early adolescent nicotine exposure 

results in long-lasting alterations in the behavioral response to nicotine.  The rewarding 
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effects of nicotine are elevated in a dose- and duration-dependent manner, while 

nicotine withdrawal signs are attenuated independently of these factors.  Our findings 

suggest that children and teenagers who begin smoking cigarettes at a young age are 

likely to have long-term consequences as a result of this behavior.  Moreover, certain 

aspects of dependence can be observed after short exposure periods and exposure to low 

doses of nicotine.  Indeed, in the clinical setting, studies indicate that dependence can be 

seen after smoking only a few cigarettes (DiFranza et al. 2002, 2007).  Correlating this 

to a rodent model, significant upregulation of nAChRs was found after exposure to low 

doses of nicotine corresponding to a net consumption of just two cigarettes a day (after 

correction for species differences) (Lichtensteiger et al. 1988; Trauth et al. 2000).   In 

summary, both animal models and human studies suggest that early age 

experimentation with cigarette smoking could have important implications on future 

nicotine dependence. 

These findings also raise the question of how second-hand smoking effects in 

adolescence may affect levels of nicotine dependence.  We have shown that relatively 

short periods of nicotine exposure and at low levels may cause alterations in important 

regulatory systems.  Children who have parents or friends who smoke may be exposed 

to levels of nicotine which could detrimentally effect the development of neurological 

systems.   These changes are likely to affect the reinforcing and aversive properties of 

nicotine and other drugs of abuse and may lead to increased vulnerability in these areas.  

In order to gain a more complete understanding of these possible consequences, studies 
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examining the effects of passive exposure to nicotine on later susceptibility to nicotine 

dependence should be conducted. 

F. Exposure to nicotine during early adolescence has persistent effects on cocaine-
induced behavior in adulthood. 
 

Nicotine is one of the first and most commonly abused drugs in adolescence and 

is known to be a strong predictor of subsequent alcohol and other drug abuse (Kandel et 

al. 1992).  Indeed, our data demonstrate the effects of adolescent nicotine exposure on 

cocaine-induced behavioral responses.  We show that early adolescent nicotine 

exposure can enhance the rewarding effects of cocaine, cocaine-induced hyperactivity, 

and behavioral sensitization to cocaine.   In both our CPP model and our acute 

locomotor studies, data showed that a repeated exposure to the higher dose of nicotine 

(0.5 mg/kg) was able to alter cocaine-induced responding.  In contrast, neither acute 

exposure nor a low dose of nicotine (0.1 mg/kg) was able to elicit this effect.  These 

findings have important implications for cross-sensitivity between nicotine and cocaine.  

It is likely that the mechanisms behind dependence to these two drugs share some 

commonalities.   

Although drugs of abuse target several brain areas, enhanced dopamine 

transmission from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is 

a key element in the reward (Koob and Le Moal 1997; Dani 2003).  It is known that 

adolescent nicotine exposure has long-lasting effects on the development of various 

pharmacological systems and it is likely that the dopaminergic system is one which is 

greatly affected.  Since nicotine and cocaine are both known to effect levels of 
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dopamine in the brain, this pathway is a likely candidate for the observed cross-

sensitization.  Although our data in Chapter 5 did not find significant differences 

between adults and adolescents in nicotine-induced dopamine release, it was not done 

after repeated exposure to nicotine. Therefore, it is still possible that dopamine plays a 

role in these changes.  Furthermore, our technique used synaptosomes which are a crude 

preparation that does not preserve the intact neuronal connections between cells.  It is 

possible that more precise techniques such as microdialysis would be more useful in 

this regard.   

Other receptors may also be involved in our behavioral observations.  Indeed, 

glutamatergic receptors are known to be involved in nicotinic effects as well.   Adriani 

et al. (2004) demonstrated that adolescent, but not adult, nicotine exposure down-

regulated mGluR2/3 subunits in the hippocampus and striatum.  This same study also 

showed changes in NMDA NR2A/B subunits regardless of the time of exposure 

suggesting the involvement of NMDA receptors in certain aspects of nicotine 

dependence.  These findings imply that other receptors may also be involved and should 

be further examined.   

G. Conclusions and Implications 

 In summary, the research in this dissertation contributes to the further 

understanding of several components adolescent nicotine dependence.  We are the first 

group to undertake a comprehensive study of nicotine reward and withdrawal 

investigating both age- and sex-related effects.  In addition, we have established the role 

for a variety of factors such as dose, sex, and duration of exposure period.  We have 
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found that adults and adolescents differ in their response to nicotine in both reward and 

withdrawal models.  In addition, we have shown that males and females display 

opposing trends in these models.  These data implicate the need for specifically targeted 

smoking cessation therapies in order to effectively reduce the number of unsuccessful 

quit attempts.   

 Our research has also shown that there in an increase in nAChR function in the 

adolescent rodent upon nicotine stimulation.  This increase is function is not attributable 

to an increase in the basal number of receptors, but may involve other receptor 

regulation mechanisms such as desensitization or upregulation.   Moreover, adolescent 

nicotine exposure also significantly enhances nAChR in adulthood, even after a drug-

free period. 

 Finally, we have demonstrated in a mouse model that relatively low levels and 

short exposure to nicotine during adolescence has long-lasting effects on both nicotine 

and cocaine dependence in adulthood.   Specifically, early adolescence represents a 

particularly unique period of development which is susceptible to these effects, while 

middle and late adolescent ages do not appear as critical.  Our data show that adolescent 

nicotine exposure causes enhancement in both nicotine and cocaine-induced reward.  

Furthermore, these effects are dependent on the dose and duration of exposure.  In 

contrast, adolescent nicotine exposure causes attenuation of nicotine withdrawal 

independent of treatment duration and dose.  Nicotine treatment in early adolescence 

also elevated cocaine-induced hyperactivity and locomotor sensitization further 
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indicating its ability to induce neurochemical changes which alter susceptibility to drug 

dependence well in adulthood. 

H. Future Studies 

 Studies indicate that nicotine, like cocaine, activates the mesocorticolimbic 

dopamine system suggesting that these two drugs of abuse share similar neurological 

mechanisms.  Indeed our research shows that nicotine exposure is able to enhance the 

several effects of cocaine later in life.  This data is novel and intriguing and has 

substantial implications in regards to adolescent smoking.   

 In our studies, relatively low levels of nicotine and short patterns of exposure 

were utilized demonstrating that even experimentation with cigarette smoking could 

have significant consequences.  A study by Damaj et al. (2007) has shown that 60 min 

following a 2.5 mg/kg administration (s.c.) of nicotine the plasma level was 

approximately 40 ng/ml.  Our study used a dose of nicotine five times lower than that in 

the previous study (0.5 mg/kg).   Since the dose and plasma nicotine levels are linearly 

correlated (Lichtensteiger et al. 1988), this would indicate a plasma nicotine level of 

approximately 8 ng/ml in our experiments after 60 min.  In addition, the maximal 

plasma level of nicotine (Cmax) was equal to 314 ± 170 ng/ml in the study by Damaj et 

al. (2007).  We would therefore expect a maximum plasma nicotine level in our study to 

be approximately 63 ng/ml.   Our studies exposed animals to nicotine levels that are 

three times lower than the plasma nicotine levels reported for a typical smoker (25 

ng/ml (Trauth et al. 2000)).   Taken together, our findings show that short exposure to 

relatively low levels of cigarette smoke is likely to have detrimental and long-lasting 
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effects on drug dependence.   Though this is the first study to examine these factors in 

the mouse model, our findings are in agreement with a study in adolescent rats which 

also found that the biological mechanisms underlying nicotine dependence can be 

activated by nicotine exposure comparable to that of an occasional smoker (Abreu-

Villaca et al. 2003). 

The mechanisms which underlie this “cross-sensitization” are still being 

elucidated.  However, several future studies would be useful in determining these 

pathways.  For example, nicotine may be altering dopamine receptor number or 

function or the level of dopamine transporters; therefore studies which measure DA 

receptor function and binding of DA ligands as well as DAT binding should be 

conducted.   Specifically, D1 and D2 ligands are of particular interest.  Functional assays 

such as GTPγS autoradiography would be a useful in vitro strategy in this regard.  

Moreover, studies have shown that there is an age-dependent development of 

dopaminergic receptors in that levels peak in adolescence before declining to adult 

quantities (Brenhouse et al. 2008).  These changes in receptor quantity correlate with 

cocaine-induced responding in models such as conditioned place preference.  The use of 

DA receptor agonists and antagonists may also contribute to further understanding.  For 

example, agonists have been shown to enhance the rewarding effects of cocaine in 

juveniles which previously did not show cocaine preference (Brenhouse et al. 2008).  

The use of DA ligands may prove useful in smoking cessation treatment strategies and 

should be further explored.   
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Based on our findings, future studies should focus on a repeated exposure 

pattern during the early adolescent period.  Our data showed that acute exposure was 

not sufficient to induced persistent behavioral alterations.  It is likely that this exposure 

pattern is not able to activate important downstream effectors which contribute to these 

alterations.  Recruitment of proteins involved in synaptic plasticity or gene expression 

are most likely required to induce such results.  In summary, we are the first to see that 

after relatively short exposure periods of low doses of nicotine, there are long-term 

changes in the behavioral responses to cocaine.  One particular challenge in explaining 

these findings is identifying fairly stable drug-induced changes which correlate to these 

behaviors.  These types of alterations would add to the comprehension of our results. 

Several factors may be contributing to our observations and should be further 

explored.  Differences in memory storage, synaptic plasticity, and gene transcription 

and expression should all be considered.  We have shown that there is increased nAChR 

function in both naïve adolescent synaptosomes and in adult synaptosomes following 

adolescent nicotine exposure.  This increase in receptor function may translate into 

downstream consequences which may be more directly involved in the plasticity 

effects.  In addition to changes in the dopaminergic system which have been previously 

discussed, it is important that other alternatives are considered.   

Certainly, long-term effects may be mediated by drug-induced changes in gene 

expression.  Given that the adolescent period is known to be a highly malleable phase of 

development in which there is an elevated level of synaptic remodeling (Rakic et al. 

1994), it is probable that exposure to drugs of abuse is able to transform circuitry in the 
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brain and induce transcription factors which cause further long-term effects.  Two 

transcription factors that have been strongly implicated in the addictive properties of 

drugs of abuse are CREB (cAMP response element binding protein) and ∆FosB.   

Nicotine has been shown to induce the transcription factor ∆FosB, a member of 

the Fos family of transcription factors (Pich et al. 1997).  ∆FosB is a good candidate for 

causing long-term plasticity effects in that it is rapidly induced, but is also very stable 

due to its long half-life (Chen et al. 1997).   Studies with transgenic mice have allowed 

researchers to investigate the role of this transcription factor in the behavioral plasticity 

to drugs of abuse.  In particular, a study by Kelz et al. (1999) found that mice 

overexpressing ∆FosB showed enhanced sensitivity to both acute locomotor effects and 

rewarding effects of cocaine.  Indeed, an upregulation of ∆FosB due to adolescent 

nicotine exposure would explain our results which also demonstrated enhanced 

responding to cocaine’s acute and rewarding effects.    

In addition to research showing that nicotine is able to induce ∆FosB, there is 

also other evidence which may link this transcription factor with our data.  ∆FosB is 

likely to act at other targets which play a role in nicotine and cocaine addiction.  For 

example, the study by Kelz et al. (1999) also indicates that the GluR2 subunit of the 

AMPA receptor is a target of ∆FosB.  Furthermore, they show that GluR2 expression is 

increased in the NAc following overexpression of ∆FosB.  This study goes on to 

eloquently show that rewarding effects of cocaine are enhanced due to overexpression 

of the GluR2 subunit which gives another possible mechanism that would explain the 

data presented in Chapter 7.   Since induction of ∆FosB is long-lived, but not 
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permanent, the upregulation of receptor subunits such as GluR2 in the AMPA receptor 

help to better explain why adolescent drug exposure may have effects of further drug 

abuse well into adulthood. 

Other possible transcriptional mechanisms which should be considered when 

explaining our results is the induction of CREB by nicotine.  Several studies have 

demonstrated a correlation between nicotine administration and CREB.  In particular, 

Walters et al. (2005) have shown that activation of CREB is necessary for nicotine 

reward in adult mice as measured by conditioned place preference testing.  Furthermore, 

chronic nicotine administration in mice results in decreased CREB phosphorylation in 

the NAc but increased CREB phosphorylation in the prefrontal cortex, while nicotine 

withdrawal increases CREB phosphorylation in the VTA (Brunzell et al. 2003).  In 

contrast, another study shows that withdrawal from chronic nicotine in rats decreases 

CREB, phosphorylated CREB, and CRE-DNA binding in the cortex and amygdala 

(Pandey et al. 2001).   While the precise role of CREB is not yet determined, it is clear 

that it is involved in both nicotine reward and withdrawal.  Induction of the 

transcription factor CREB has been linked to an increase in the expression of tyrosine 

hydroxylase (Piech-Dumas and Tank 1999), an enzyme which is critically involved in 

the formation of dopamine.  Even though the induction of CREB is relatively short-

lived as compared to that of ∆FosB, it may still play a role in long-term plasticity 

changes via the enhancement of dopamine in the mesolimbic reward pathway.    

In summary, it is probable that transcriptional mechanisms such as the ones 

described above are involved in the long-term plasticity effects of adolescent nicotine 
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exposure.  It will be worthwhile to explore these mechanisms in greater detail in the 

future.  Studies involving transgenic mice (both CREB and ∆FosB) as well as an 

investigation of pCREB and ∆FosB markers through molecular techniques such as 

western blots could add to the understanding of the behavioral results which are 

described in our research.   
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